Evaluation of thin film fuel cells with Zr-rich BaZrxCe0.8−xY0.2O3−δ electrolytes (x ≥ 0.4) fabricated by a single-step reactive sintering method
This paper reports a survey of power generation characteristics of anode-supported thin film fuel cells with Zr-rich BaZrxCe0.8−xY0.2O3−δ (x = 0.4, 0.6, 0.7, and 0.8) proton-conducting electrolytes, which were fabricated by single step co-firing with Zn(NO3)2 additives at a relatively low temperatur...
Gespeichert in:
Veröffentlicht in: | RSC advances 2018-01, Vol.8 (46), p.26309-26317 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports a survey of power generation characteristics of anode-supported thin film fuel cells with Zr-rich BaZrxCe0.8−xY0.2O3−δ (x = 0.4, 0.6, 0.7, and 0.8) proton-conducting electrolytes, which were fabricated by single step co-firing with Zn(NO3)2 additives at a relatively low temperature (1400 °C). The grain sizes significantly increased to several μm for x = 0.4 and 0.6, whereas the grain sizes remained in the sub-μm ranges for x = 0.7 and 0.8, which resulted in large gaps of the fuel cell performances at x over and below 0.6. The cells for x = 0.4 and 0.6 exhibited efficient power generation, yielding peak powers of 279 and 336 mW cm−2 at 600 °C, respectively, which were higher than those of the corresponding cells previously reported. However, the performances abruptly deteriorated with the increasing x to more than 0.7 because the electrolyte films were highly resistive due to the coarse-grained microstructures. Impedance spectroscopy for the dense sintered BaZrxCe0.8−xY0.2O3−δ discs confirmed that the total proton conductivity of BaZr0.6Ce0.2Y0.2O3−δ was higher than that of BaZr0.4Ce0.4Y0.2O3−δ at temperatures above 500 °C despite relatively small grain sizes. In addition, BaZr0.6Ce0.2Y0.2O3−δ cells could gain a stable current throughout a continuous run for a few days under CO2-containing fuel supply, which was due to high fraction of thermodynamically stable BaZrO3 matrices. It was demonstrated that BaZr0.6Ce0.2Y0.2O3−δ is a promising electrolyte for proton-conducting ceramic fuel cells with excellent proton conductivity and CO2 tolerance at intermediate temperatures. |
---|---|
ISSN: | 2046-2069 |
DOI: | 10.1039/c8ra04724c |