Alpha-tocotrienol enhances arborization of primary hippocampal neurons via upregulation of Bcl-xL

Alpha-tocotrienol (α-TCT) is a member of the vitamin E family. It has been reported to protect the brain against various pathologies including cerebral ischemia and neurodegeneration. However, it is still unclear if α-TCT exhibits beneficial effects during brain development. We hypothesized that tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrition research (New York, N.Y.) N.Y.), 2022-05, Vol.101, p.31-42
Hauptverfasser: Park, Han-A, Crowe-White, Kristi M., Ciesla, Lukasz, Scott, Madison, Bannerman, Sydni, Davis, Abigail U., Adhikari, Bishnu, Burnett, Garrett, Broman, Katheryn, Ferdous, Khondoker Adeba, Lackey, Kimberly H., Licznerski, Pawel, Jonas, Elizabeth A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alpha-tocotrienol (α-TCT) is a member of the vitamin E family. It has been reported to protect the brain against various pathologies including cerebral ischemia and neurodegeneration. However, it is still unclear if α-TCT exhibits beneficial effects during brain development. We hypothesized that treatment with α-TCT improves intracellular redox homeostasis supporting normal development of neurons. We found that primary hippocampal neurons isolated from rat feti grown in α-TCT-containing media achieved greater levels of neurite complexity compared to ethanol-treated control neurons. Neurons were treated with 1 μM α-TCT for 3 weeks, and media were replaced with fresh α-TCT every week. Treatment with α-TCT increased α-TCT levels (26 pmol/mg protein) in the cells, whereas the control neurons did not contain α-TCT. α-TCT-treated neurons produced adenosine triphosphate (ATP) at a higher rate and increased ATP retention at neurites, supporting formation of neurite branches. Although treatment with α-TCT alone did not change neuronal viability, neurons grown in α-TCT were more resistant to death at maturity. We further found that messenger RNA and protein levels of B-cell lymphoma-extra large (Bcl-xL) are increased by α-TCT treatment without inducing posttranslational cleavage of Bcl-xL. Bcl-xL is known to enhance mitochondrial energy production, which improves neuronal function including neurite outgrowth and neurotransmission. Therefore α-TCT-mediated Bcl-xL upregulation may be the central mechanism of neuroprotection seen in the α-TCT-treated group. In summary, treatment with α-TCT upregulates Bcl-xL and increases ATP levels at neurites. This correlates with increased neurite branching during development and with protection of mature neurons against oxidative stress. [Display omitted]
ISSN:0271-5317
1879-0739
DOI:10.1016/j.nutres.2022.02.007