Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs

Nonreciprocal elements are a vital building block of electrical and optical systems. In the infrared regime, there is a particular interest in structures that break reciprocity because their thermal absorptive (and emissive) properties should not obey the Kirchhoff thermal radiation law. In this wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-05, Vol.8 (18), p.eabm4308-eabm4308
Hauptverfasser: Shayegan, Komron J, Zhao, Bo, Kim, Yonghwi, Fan, Shanhui, Atwater, Harry A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonreciprocal elements are a vital building block of electrical and optical systems. In the infrared regime, there is a particular interest in structures that break reciprocity because their thermal absorptive (and emissive) properties should not obey the Kirchhoff thermal radiation law. In this work, we break time-reversal symmetry and reciprocity in n-type-doped magneto-optic InAs with a static magnetic field where light coupling is mediated by a guided-mode resonator structure, whose resonant frequency coincides with the epsilon-near-zero resonance of the doped indium arsenide. Using this structure, we observe the nonreciprocal absorptive behavior as a function of magnetic field and scattering angle in the infrared. Accounting for resonant and nonresonant optical scattering, we reliably model experimental results that break reciprocal absorption relations in the infrared. The ability to design these nonreciprocal absorbers opens an avenue to explore devices with unequal absorptivity and emissivity in specific channels.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abm4308