Update on air pollution control strategies for coal-fired power plants

Coal is expected to remain a significant power supply source worldwide and shifting to carbon-neutral fuels will be challenging because of growing electricity demand and booming industrialization. At the same time, coal consumption results in severe air pollution and health concerns. Improvement in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clean technologies and environmental policy 2022, Vol.24 (8), p.2329-2347
Hauptverfasser: Asif, Zunaira, Chen, Zhi, Wang, Hui, Zhu, Yinyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coal is expected to remain a significant power supply source worldwide and shifting to carbon-neutral fuels will be challenging because of growing electricity demand and booming industrialization. At the same time, coal consumption results in severe air pollution and health concerns. Improvement in emission control technologies is a key to improving air quality in coal power plants. Many scientists reported removing air pollutants individually via conventional control methods. However, controlling multiple pollutants combinedly using the latest techniques is rarely examined. Therefore, this paper overviews the current and advanced physical technologies to control multi-air pollutants synergistically, including carbon control technologies. Also, the paper aims to examine how potential air pollutants (e.g., PM 2.5 , SO 2 , NOx, CO 2 ), including mercury from the coal-fired power plants, cause environmental impacts. The data synthesis shows that coal quality is the most significant factor for increasing air emissions, regardless of power plant capacity. It is found that selecting techniques is critical for new and retrofitted plants depending on the aging of a power plant and other socio-economic factors. Considering the future perspective, this paper discusses possible pathways to transform from linear to a circular economy in a coal power plant sector, such as utilizing energy losses through energy-efficient processes and reuse of syngas. The article provides an in-depth analysis of advanced cost-effective techniques that would help to control the air pollution level. Additionally, a life cycle assessment-based decision-making framework is proposed that would assist the stakeholders in achieving net-zero emissions and offset the financial burden for air pollution control in coal-fired power plants. Graphical abstract
ISSN:1618-954X
1618-9558
DOI:10.1007/s10098-022-02328-8