Dietary lycopene attenuates cigarette smoke-promoted nonalcoholic steatohepatitis by preventing suppression of antioxidant enzymes in ferrets

Cigarette smoke (CS) is an independent risk factor in development of nonalcoholic steatohepatitis (NASH) and fibrosis. Lycopene, a carotenoid naturally occurring in tomatoes, has been shown to be a protective agent against tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutritional biochemistry 2021-05, Vol.91, p.108596-108596, Article 108596
Hauptverfasser: Mustra Rakic, Jelena, Liu, Chun, Veeramachaneni, Sudipta, Wu, Dayong, Paul, Ligi, Ausman, Lynne M., Wang, Xiang-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cigarette smoke (CS) is an independent risk factor in development of nonalcoholic steatohepatitis (NASH) and fibrosis. Lycopene, a carotenoid naturally occurring in tomatoes, has been shown to be a protective agent against tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced NASH. In the present study using a ferret model we investigated whether CS promotes NASH and whether dietary lycopene can inhibit CS-promoted NASH development, and if so, what potential mechanisms were involved. Ferrets were divided into 4 groups (n=12−16/group): control, NNK/CS exposed, NNK/CS plus low-dose lycopene (2.2 mg/kg BW/day), and NNK/CS plus high-dose lycopene (6.6 mg/kg BW/day) groups, for 26 weeks. Results showed that hepatic steatosis, infiltrates of inflammatory cells, and the number and size of inflammatory foci in liver, together with key genes involved in hepatic fibrogenesis were higher in the NNK/CS group compared to the control group; a lycopene diet reversed these changes to the levels of the control group. Interestingly, a major lycopene cleavage enzyme, beta-carotene 9’,10’-oxygenase (BCO2), which recently has been recognized to play metabolic roles beyond cleavage function, was down-regulated by NNK/CS exposure, but this decrease was prevented by lycopene feeding. NNK/CS exposure also downregulated liver expression of antioxidant enzymes and upregulated oxidative stress marker, which were all prevented by lycopene. In conclusion, our results suggest that CS can promote development of NASH and liver fibrosis in ferrets, which is associated with downregulation of BCO2 and impairment of antioxidant system in liver; dietary lycopene may inhibit CS-promoted NASH by preventing suppression of BCO2 and decline in antioxidant network. [Display omitted]
ISSN:0955-2863
1873-4847
DOI:10.1016/j.jnutbio.2021.108596