An atlas of posttranslational modifications on RNA binding proteins

RNA structure and function are intimately tied to RNA binding protein recognition and regulation. Posttranslational modifications are chemical modifications which can control protein biology. The role of PTMs in the regulation RBPs is not well understood, in part due to a lacking analysis of PTM dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2022-05, Vol.50 (8), p.4329-4339
Hauptverfasser: England, Whitney E, Wang, Jingtian, Chen, Siwei, Baldi, Pierre, Flynn, Ryan A, Spitale, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA structure and function are intimately tied to RNA binding protein recognition and regulation. Posttranslational modifications are chemical modifications which can control protein biology. The role of PTMs in the regulation RBPs is not well understood, in part due to a lacking analysis of PTM deposition on RBPs. Herein, we present an analysis of posttranslational modifications (PTMs) on RNA binding proteins (RBPs; a PTM RBP Atlas). We curate published datasets and primary literature to understand the landscape of PTMs and use protein-protein interaction data to understand and potentially provide a framework for understanding which enzymes are controlling PTM deposition and removal on the RBP landscape. Intersection of our data with The Cancer Genome Atlas also provides researchers understanding of mutations that would alter PTM deposition. Additional characterization of the RNA-protein interface provided from in-cell UV crosslinking experiments provides a framework for hypotheses about which PTMs could be regulating RNA binding and thus RBP function. Finally, we provide an online database for our data that is easy to use for the community. It is our hope our efforts will provide researchers will an invaluable tool to test the function of PTMs controlling RBP function and thus RNA biology.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkac243