Loss of Natriuretic Peptide Receptor C Enhances Sinoatrial Node Dysfunction in Aging and Frail Mice
Abstract Heart rate (HR) is controlled by the sinoatrial node (SAN). SAN dysfunction is highly prevalent in aging; however, not all individuals age at the same rate. Rather, health status during aging is affected by frailty. Natriuretic peptides regulate SAN function in part by activating natriureti...
Gespeichert in:
Veröffentlicht in: | The journals of gerontology. Series A, Biological sciences and medical sciences Biological sciences and medical sciences, 2022-05, Vol.77 (5), p.902-908 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Heart rate (HR) is controlled by the sinoatrial node (SAN). SAN dysfunction is highly prevalent in aging; however, not all individuals age at the same rate. Rather, health status during aging is affected by frailty. Natriuretic peptides regulate SAN function in part by activating natriuretic peptide receptor C (NPR-C). The impacts of NPR-C on HR and SAN function in aging and as a function of frailty are unknown. Frailty was measured in aging wild-type and NPR-C knockout (NPR-C−/−) mice using a mouse clinical frailty index (FI). HR and SAN structure and function were investigated using intracardiac electrophysiology in anesthetized mice, high-resolution optical mapping in intact atrial preparations, histology, and molecular biology. NPR-C−/− mice rapidly became frail leading to shortened life span. HR was reduced and SAN recovery time was increased in older versus younger mice, and these changes were exacerbated in NPR-C−/− mice; however, there was substantial variability among age groups and genotypes. HR and SAN recovery time were correlated with FI score and fell along a continuum regardless of age or genotype. Optical mapping demonstrates impairments in SAN function that were also correlated with FI score. SAN fibrosis was increased in aged and NPR-C−/− mice and was graded by FI score. Loss of NPR-C results in accelerated aging and rapid decline in health status in association with impairments in HR and SAN function. Frailty assessment was effective and better able to distinguish aging-dependent changes in SAN function in the setting of shortened life span due to loss of NPR-C. |
---|---|
ISSN: | 1079-5006 1758-535X |
DOI: | 10.1093/gerona/glab357 |