Integration of RT-LAMP and Microfluidic Technology for Detection of SARS-CoV-2 in Wastewater as an Advanced Point-of-Care Platform

Development of lab-on-a-chip (LOC) system based on integration of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and microfluidic technology is expected to speed up SARS-CoV-2 diagnostics allowing early intervention. In the current work, reverse transcriptase quantitative pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food and environmental virology 2022-12, Vol.14 (4), p.364-373
Hauptverfasser: Donia, Ahmed, Furqan Shahid, Muhammad, Hassan, Sammer-ul, Shahid, Ramla, Ahmad, Aftab, Javed, Aneela, Nawaz, Muhammad, Yaqub, Tahir, Bokhari, Habib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of lab-on-a-chip (LOC) system based on integration of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and microfluidic technology is expected to speed up SARS-CoV-2 diagnostics allowing early intervention. In the current work, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and RT-LAMP assays were performed on extracted RNA of seven wastewater samples from COVID-19 hotspots. RT‑LAMP assay was also performed on wastewater samples without RNA extraction. Current detection of SARS-CoV-2 is mainly by RT-qPCR of ORF (ORF1ab) and N genes so we targeted both to find the best target gene for SARS-CoV-2 detection. We also performed RT-LAMP with/without RNA extraction inside microfluidic device to target both genes. Positivity rates of RT-qPCR and RT-LAMP performed on extracted RNA were 100.0% (7/7) and 85.7% (6/7), respectively. RT-qPCR results revealed that all 7 wastewater samples were positive for N gene (Ct range 37–39), and negative for ORF1ab, suggesting that N gene could be the best target gene for SARS-CoV-2 detection. RT-LAMP of N and ORF (ORF1a) genes performed on wastewater samples without RNA extraction indicated that all 7 samples remains pink (negative). The color remains pink in all microchannels except microchannels which subjected to RT-LAMP for targeting N region after RNA extraction (yellow color) in 6 out of 7 samples. This study shows that SARS-CoV-2 was successfully detected from wastewater samples using RT-LAMP in microfluidic chips. This study brings the novelty involving the use of wastewater samples for detection of SARS-CoV-2 without previous virus concentration and with/without RNA extraction. Graphical abstract
ISSN:1867-0334
1867-0342
1867-0342
DOI:10.1007/s12560-022-09522-3