Short-term PM2.5 exposure and early-readmission risk: a retrospective cohort study in North Carolina heart failure patients

Short-term changes in ambient fine particulate matter (PM2.5) increase the risk for unplanned hospital readmissions. However, this association has not been fully evaluated for high-risk patients or examined to determine if the readmission risk differs based on time since discharge. Here we investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American heart journal 2022-06, Vol.248, p.130-138
Hauptverfasser: Wyatt, Lauren H., Weaver, Anne M., Moyer, Joshua, Schwartz, Joel D., Di, Qian, Diaz-Sanchez, David, Cascio, Wayne E., Ward-Caviness, Cavin K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Short-term changes in ambient fine particulate matter (PM2.5) increase the risk for unplanned hospital readmissions. However, this association has not been fully evaluated for high-risk patients or examined to determine if the readmission risk differs based on time since discharge. Here we investigate the relation between ambient PM2.5 and 30-day readmission risk in heart failure (HF) patients using daily time windows and examine how this risk varies with respect to time following discharge. We performed a retrospective cohort study of 17,674 patients with a recorded HF diagnosis between 2004 and 2016. The cohort was identified using the EPA CARES electronic health record resource. The association between ambient daily PM2.5 (μg/m3) concentration and 30-day readmissions was evaluated using time-dependent Cox proportional hazard models. PM2.5 associated readmission risk was examined throughout the 30-day readmission period and for early readmissions (1-3 days post-discharge). Models for 30-day readmissions included a parametric continuous function to estimate the daily PM2.5 associated readmission hazard. Fine-resolution ambient PM2.5 data were assigned to patient residential address and hazard ratios are expressed per 10 μg/m3 of PM2.5. Secondary analyses examined potential effect modification based on the time after a HF diagnosis, urbanicity, medication prescription, comorbidities, and type of HF. The hazard of a PM2.5-related readmission within 3 days of discharge was 1.33 (95% CI 1.18-1.51). This PM2.5 readmission hazard was slightly elevated in patients residing in non-urban areas (1.43, 95%CI 1.22-1.67) and for HF patients without a beta-blocker prescription prior to the readmission (1.35; 95% CI 1.19-1.53). Our findings add to the evidence indicating substantial air quality-related health risks in individuals with underlying cardiovascular disease. Hospital readmissions are key metrics for patients and providers alike. As a potentially modifiable risk factor, air pollution-related interventions may be enacted that might assist in reducing costly and burdensome unplanned readmissions. [Display omitted]
ISSN:0002-8703
1097-6744
DOI:10.1016/j.ahj.2022.02.015