Enhanced stability and nitrogen removal efficiency of Klebsiella sp. entrapped in chitosan beads applied in the domestic sewage system

Although numerous denitrifying bacteria have been isolated and characterized, their capacity is seriously compromised by traditional inoculant addition and environmental stress in open bioreactors for wastewater treatment. In this study, a biocompatible material, chitosan, was used as a carrier to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-11, Vol.10 (67), p.41078-41087
Hauptverfasser: Zhao, Ruojin, Cui, Zhiwen, Pan, Biwen, Li, Yiyi, Chen, Yinyan, Qu, Jin, Jin, Peng, Zheng, Zhanwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although numerous denitrifying bacteria have been isolated and characterized, their capacity is seriously compromised by traditional inoculant addition and environmental stress in open bioreactors for wastewater treatment. In this study, a biocompatible material, chitosan, was used as a carrier to immobilize a simultaneously heterotrophic nitrifying-aerobic denitrifying bacterium sp., KSND, for continuous nitrogen removal from domestic wastewater in an open purification tank. The results showed that immobilization had no significant effect on cell viability and was beneficial for the reproduction and adhesion of cells. The entrapped KSND exhibited a slightly higher nitrogen removal efficiency of 90.09% than that of free KSND (87.69%). Subsequently, repeated batch cultivation experiments and analysis of the effects of organic contaminants and metal ions were performed using artificial wastewater and domestic wastewater. The findings revealed that the immobilized KSND beads presented desirable biophysical properties with good mechanical stability, cell viability, and enrichment, remarkable stability in organic contaminants and metal ions, and high efficiency nitrogen removal capacity. In conclusion, the developed immobilized denitrifying bacteria system has great potential for continuous wastewater treatment in open bioreactors.
ISSN:2046-2069
2046-2069
DOI:10.1039/d0ra07732a