Magneto-induced rheological properties of magnetorheological gel under quasi-static shear with large deformation

Magnetorheological gel (MRG) is a kind of magneto-sensitive smart material mainly composed of soft magnetic particles and polyurethane, which can decrease or even avoid the severe sedimentation problem appearing in MR fluids. In this work, the rheological properties of MRG under quasi-statically mon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-08, Vol.1 (53), p.31691-3174
Hauptverfasser: Mao, Runsong, Wang, Huixing, Zhang, Guang, Ye, Xudan, Wang, Jiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetorheological gel (MRG) is a kind of magneto-sensitive smart material mainly composed of soft magnetic particles and polyurethane, which can decrease or even avoid the severe sedimentation problem appearing in MR fluids. In this work, the rheological properties of MRG under quasi-statically monotonic and cyclic loading with large deformation were investigated, respectively. The results could provide effective guidance for the design of MR devices that are often subjected to quasi-static loading. Firstly, MRG was fabricated by mixing carbonyl iron particles (CIPs) with the polyurethane matrix. Then, variations of normal force with time and magnetic field for MRG were tested and discussed. Moreover, the influences of CIPs content, shear rate, shear strain amplitude and magnetic field on the energy dissipation density of MRG were analyzed. The results showed the magneto-induced damping performance of MRG is highly relevant to the CIPs content and magnetic field, i.e. the magneto-induced enhancement of energy dissipation density of MRG with 60% CIPs content could reach up to 104 900% when the external magnetic strength increases to 391 kA m −1 . Furthermore, the related mechanisms, from the perspective of microstructure, were proposed to qualitatively explain the various mechanical phenomena occurring in shear stress and normal force. Magnetorheological gel is a material composed of magnetic particles and polyurethane. CIPs content, shear rate, shear strain amplitude and magnetic field affect damping performance. The magento-induced enhancement of energy dissipation density of MRG-60 could reach 104900%.
ISSN:2046-2069
2046-2069
DOI:10.1039/d0ra05843b