RBD-mRNA vaccine induces broadly neutralizing antibodies against Omicron and multiple other variants and protects mice from SARS-CoV-2 challenge

Multiple SARS-CoV-2 variants are identified with higher rates of transmissibility or greater disease severity. Particularly, recent emergence of Omicron variant with rapid human-to-human transmission posts new challenges to the current prevention strategies. In this study, following vaccination with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational research : the journal of laboratory and clinical medicine 2022-10, Vol.248, p.11-21
Hauptverfasser: Shi, Juan, Zheng, Jian, Zhang, Xiujuan, Tai, Wanbo, Odle, Abby E., Perlman, Stanley, Du, Lanying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiple SARS-CoV-2 variants are identified with higher rates of transmissibility or greater disease severity. Particularly, recent emergence of Omicron variant with rapid human-to-human transmission posts new challenges to the current prevention strategies. In this study, following vaccination with an mRNA vaccine encoding SARS-CoV-2 receptor-binding domain (RBD-mRNA), we detected serum antibodies that neutralized pseudoviruses expressing spike (S) protein harboring single or multiple mutations, as well as authentic SARS-CoV-2 variants, and evaluated its protection against SARS-CoV-2 infection. The vaccine induced durable antibodies that potently neutralized prototypic strain and B.1.1.7 lineage variant pseudoviruses containing N501Y or D614G mutations alone or in combination with a N439K mutation (B.1.258 lineage), with a L452R mutation (B.1.427 or B.1.429 lineage), or a L452R-E484Q double mutation (B.1.617.1 variant), although neutralizing activity against B.1.1.7 lineage variant containing 10 amino acid changes in the S protein was slightly reduced. The RBD-mRNA-induced antibodies exerted moderate neutralization against authentic B.1.617.2 and B.1.1.529 variants, and pseudotyped B.1.351 and P.1 lineage variants containing K417N/T, E484K, and N501Y mutations, the B.1.617.2 lineage variant harboring L452R, T478K, and P681R mutations, and the B.1.1.529 lineage variant containing 38 mutations in the S protein. Particularly, RBD-mRNA vaccine completely protected mice from challenge with a virulent mouse-adapted SARS-CoV-2 variant. Among these lineages, B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529 belong to Alpha, Beta, Gamma, Delta, and Omicron variants, respectively. Our observations reveal that RBD-mRNA vaccine is promising and highlights the need to design novel vaccines with improved neutralization against current and future pandemic SARS-CoV-2 variants.
ISSN:1931-5244
1878-1810
DOI:10.1016/j.trsl.2022.04.007