Gel-based precursors for the high-performance of n-channel GaInSnZnO and p-channel CuGaSnSO thin-film transistors
The performance of metal-oxide thin-film transistors (TFTs) should be further improved for the applications of next-generation displays. Here, the developments of gel-derived gallium-indium-tin-zinc oxide (GITZO) for n-channel and copper-gallium-tin-sulfide oxide (CGTSO) for p-channel TFTs are demon...
Gespeichert in:
Veröffentlicht in: | RSC advances 2021-10, Vol.11 (54), p.34392-3441 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of metal-oxide thin-film transistors (TFTs) should be further improved for the applications of next-generation displays. Here, the developments of gel-derived gallium-indium-tin-zinc oxide (GITZO) for n-channel and copper-gallium-tin-sulfide oxide (CGTSO) for p-channel TFTs are demonstrated. The a-GITZO film by gel-based precursor gives an excellent interface with ZrO
x
compared to the GITZO deposited using pristine or purified precursor. The gel-derived GITZO TFT exhibits the saturation mobility (
μ
sat
) of 28.6 ± 2.15 cm
2
V
−1
s
−1
, three-fold higher than the pristine one, and excellent bias stability. The boost in GITZO TFT performances is due to the purity of the metal oxide material and higher film density with smooth surface morphology. In addition, the field-effect mobility (
μ
FE
) of the p-channel copper-tin-sulfide-gallium oxide (CGTSO) TFT could be increased from 1.71 to 4.25 cm
2
V
−1
s
−1
using a gel-derived precursor solution. Therefore, these results demonstrate that the gel-derived metal-oxide precursor by the solution process is a promising one for the high performance of the TFT backplane.
The performance of metal-oxide TFTs should be further improved for the applications of next-generation displays. Here, the developments of gel-derived GITZO for n-channel and CGTSO for p-channel TFTs are demonstrated. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/d1ra04787f |