Partial epithelial–mesenchymal transition during enamel development

Objectives We set out to investigate whether a hybrid stem‐like p‐EMT phenotype develops during murine molar enamel development in vivo. Setting and Sample Population Histology specimens incorporating molar tooth buds harvested from mice at post‐natal day 4 (P4) were included in our studies. Materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental dental research 2022-04, Vol.8 (2), p.513-518
Hauptverfasser: Bazina, Fayrouz, Brouxhon, Sabine M., Kyrkanides, Stephanos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives We set out to investigate whether a hybrid stem‐like p‐EMT phenotype develops during murine molar enamel development in vivo. Setting and Sample Population Histology specimens incorporating molar tooth buds harvested from mice at post‐natal day 4 (P4) were included in our studies. Materials and Methods We employed double immunofluorescence staining to analyze the simultaneous expression of the epithelial marker E‐cadherin and the mesenchymal marker N‐cadherin in histology specimens with tooth buds harvested from P4 mice. Moreover, we evaluated the expression of the core master stem cell markers Oct4 and Sox2, as well as the mature ameloblast marker amelogenin. Results Here we document the co‐expression of E‐cadherin and N‐cadherin in a sub‐population of pre‐ameloblasts in the inner enamel epithelium suggestive of the presence of a hybrid epithelial/mesenchymal phenotype resulting from p‐EMT. Moreover, the core stem cell factors Oct4 and Sox2 colocalized with E‐cadherin expressing pre‐ameloblasts, whereas the mesenchymal marker N‐cadherin was expressed specifically by amelogenin–positive mature secretory ameloblasts. Conclusions The differentiation of E‐cadherin–positive pre‐ameloblasts towards N‐cadherin–positive mature secretory ameloblasts transition through a previously unidentified epithelial/mesenchymal stage derived through p‐EMT, co‐expressing the master transcription factors Oct4 and Sox2.
ISSN:2057-4347
2057-4347
DOI:10.1002/cre2.543