Conductive Supramolecular Polymer Nanocomposites with Tunable Properties to Manipulate Cell Growth and Functions

Synthetic bioactive nanocomposites show great promise in biomedicine for use in tissue growth, wound healing and the potential for bioengineered skin substitutes. Hydrogen-bonded supramolecular polymers (3A-PCL) can be combined with graphite crystals to form graphite/3A-PCL composites with tunable p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-04, Vol.23 (8), p.4332
Hauptverfasser: Wu, Cheng-You, Melaku, Ashenafi Zeleke, Ilhami, Fasih Bintang, Chiu, Chih-Wei, Cheng, Chih-Chia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthetic bioactive nanocomposites show great promise in biomedicine for use in tissue growth, wound healing and the potential for bioengineered skin substitutes. Hydrogen-bonded supramolecular polymers (3A-PCL) can be combined with graphite crystals to form graphite/3A-PCL composites with tunable physical properties. When used as a bioactive substrate for cell culture, graphite/3A-PCL composites have an extremely low cytotoxic activity on normal cells and a high structural stability in a medium with red blood cells. A series of in vitro studies demonstrated that the resulting composite substrates can efficiently interact with cell surfaces to promote the adhesion, migration, and proliferation of adherent cells, as well as rapid wound healing ability at the damaged cellular surface. Importantly, placing these substrates under an indirect current electric field at only 0.1 V leads to a marked acceleration in cell growth, a significant increase in total cell numbers, and a remarkable alteration in cell morphology. These results reveal a newly created system with great potential to provide an efficient route for the development of multifunctional bioactive substrates with unique electro-responsiveness to manipulate cell growth and functions.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23084332