An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils

Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2022-04, Vol.19 (8), p.4666
Hauptverfasser: Kaviani Rad, Abdullah, Astaykina, Angelika, Streletskii, Rostislav, Afsharyzad, Yeganeh, Etesami, Hassan, Zarei, Mehdi, Balasundram, Siva K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph19084666