Optimization and validation of multi-state NMR protein structures using structural correlations

Recent advances in the field of protein structure determination using liquid-state NMR enable the elucidation of multi-state protein conformations that can provide insight into correlated and non-correlated protein dynamics at atomic resolution. So far, NMR-derived multi-state structures were typica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomolecular NMR 2022-04, Vol.76 (1-2), p.39-47
Hauptverfasser: Ashkinadze, Dzmitry, Kadavath, Harindranath, Riek, Roland, Güntert, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in the field of protein structure determination using liquid-state NMR enable the elucidation of multi-state protein conformations that can provide insight into correlated and non-correlated protein dynamics at atomic resolution. So far, NMR-derived multi-state structures were typically evaluated by means of visual inspection of structure superpositions, target function values that quantify the violation of experimented restraints and root-mean-square deviations that quantify similarity between conformers. As an alternative or complementary approach, we present here the use of a recently introduced structural correlation measure, PDBcor, that quantifies the clustering of protein states as an additional measure for multi-state protein structure analysis. It can be used for various assays including the validation of experimental distance restraints, optimization of the number of protein states, estimation of protein state populations, identification of key distance restraints, NOE network analysis and semiquantitative analysis of the protein correlation network. We present applications for the final quality analysis stages of typical multi-state protein structure calculations.
ISSN:0925-2738
1573-5001
DOI:10.1007/s10858-022-00392-2