Risk Factor Analysis for Predicting the Onset of Rotator Cuff Calcific Tendinitis Based on Artificial Intelligence

Background. Symptomatic rotator cuff calcific tendinitis (RCCT) is a common shoulder disorder, and approaches combined with artificial intelligence greatly facilitate the development of clinical practice. Current scarce knowledge of the onset suggests that clinicians may need to explore this disease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022-04, Vol.2022, p.8978878-6
Hauptverfasser: Dong, Shengtao, Li, Jie, Zhao, Haozong, Zheng, Yuanyuan, Chen, Yaoning, Shen, Junxi, Yang, Hua, Zhu, Jieyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Symptomatic rotator cuff calcific tendinitis (RCCT) is a common shoulder disorder, and approaches combined with artificial intelligence greatly facilitate the development of clinical practice. Current scarce knowledge of the onset suggests that clinicians may need to explore this disease thoroughly. Methods. Clinical data were retrospectively collected from subjects diagnosed with RCCT at our institution within the period 2008 to 2020. A standardized questionnaire related to shoulder symptoms was completed in all cases, and standardized radiographs of both shoulders were extracted using a human-computer interactive electronic medical system (EMS) to clarify the clinical diagnosis of symptomatic RCCT. Based on the exclusion of asymptomatic subjects, risk factors in the baseline characteristics significantly associated with the onset of symptomatic RCCT were assessed via stepwise logistic regression analysis. Results. Of the 1,967 consecutive subjects referred to our academic institution for shoulder discomfort, 237 were diagnosed with symptomatic RCCT (12.05%). The proportion of women and the prevalence of clinical comorbidities were significantly higher in the RCCT cohort than those in the non-RCCT cohort. Stepwise logistic regression analysis confirmed that female gender, hyperlipidemia, diabetes mellitus, and hypothyroidism were independent risk factors for the entire cohort. Stratified by gender, the study found a partial overlap of risk factors contributing to morbidity in men and women. Diagnosis of hyperlipidemia, diabetes mellitus, and hypothyroidism in male cases and diabetes mellitus in female cases were significantly associated with symptomatic RCCT. Conclusion. Independent predictors of symptomatic RCCT are female, hyperlipidemia, diabetes mellitus, and hypothyroidism. Men diagnosed with hyperlipidemia, diabetes mellitus, and hypothyroidism are at high risk for symptomatic RCCT, while more medical attention is required for women with diabetes mellitus. Artificial intelligence offers pioneering innovations in the diagnosis and treatment of musculoskeletal disorders, and careful assessment through individualized risk stratification can help predict onset and targeted early stage treatment.
ISSN:1687-5265
1687-5273
DOI:10.1155/2022/8978878