Fifty Years of Research on Protonophores: Mitochondrial Uncoupling As a Basis for Therapeutic Action
Protonophores are compounds capable of electrogenic transport of protons across membranes. Protonophores have been intensively studied over the past 50 years owing to their ability to uncouple oxidation and phosphorylation in mitochondria and chloroplasts. The action mechanism of classical uncoupler...
Gespeichert in:
Veröffentlicht in: | Actanaturae 2022-01, Vol.14 (1), p.4-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protonophores are compounds capable of electrogenic transport of protons across membranes. Protonophores have been intensively studied over the past 50 years owing to their ability to uncouple oxidation and phosphorylation in mitochondria and chloroplasts. The action mechanism of classical uncouplers, such as DNP and CCCP, in mitochondria is believed to be related to their protonophoric activity; i.e., their ability to transfer protons across the lipid part of the mitochondrial membrane. Given the recently revealed deviations in the correlation between the protonophoric activity of some uncouplers and their ability to stimulate mitochondrial respiration, this review addresses the involvement of some proteins of the inner mitochondrial membrane, such as the ATP/ADP antiporter, dicarboxylate carrier, and ATPase, in the uncoupling process. However, these deviations do not contradict the Mitchell theory but point to a more complex nature of the interaction of DNP, CCCP, and other uncouplers with mitochondrial membranes. Therefore, a detailed investigation of the action mechanism of uncouplers is required for a more successful pharmacological use, including their antibacterial, antiviral, anticancer, as well as cardio-, neuro-, and nephroprotective effects. |
---|---|
ISSN: | 2075-8251 2075-8243 |
DOI: | 10.32607/actanaturae.11610 |