Abnormal bile acid-microbiota crosstalk promotes the development of hepatocellular carcinoma
Background Gut microbiota and microbe-derived metabolites are involved in the development of HCC. Bile acids (BAs) are the most important gut microbiota-modulated endogenous signaling molecules. Methods We tested serum bile acid levels and gut microbiome compositions in patients with HCC, chemical-i...
Gespeichert in:
Veröffentlicht in: | Hepatology international 2022-04, Vol.16 (2), p.396-411 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Gut microbiota and microbe-derived metabolites are involved in the development of HCC. Bile acids (BAs) are the most important gut microbiota-modulated endogenous signaling molecules.
Methods
We tested serum bile acid levels and gut microbiome compositions in patients with HCC, chemical-induced HCC mouse models (DEN-HCC mice) and mouse orthotopic implanted liver tumor models with vancomycin treatment (vancomycin-treated mice). Then, we screened an important kind of HCC-related BAs, and verified its effect on the growth of HCC in vivo and in vitro.
Results
We found that the remarkably decreasing percentages of serum secondary BAs in the total bile acids of patients and DEN-HCC mice, especially, conjugated deoxycholic acids (DCA). The relative abundance of the bile salt hydrolase (BSH)-rich bacteria (Bifidobacteriales, Lactobacillales, Bacteroidales, and Clostridiales) was decreased in the feces of patients and DEN-HCC mice. Then, in vancomycin-treated mice, vancomycin treatment induced a reduction in the BSH-rich bacteria and promoted the growth of liver tumors. Similarly, the percentage of conjugated DCA after vancomycin treatment was significantly declined. We used a kind of conjugated DCA, Glyco-deoxycholic acid (GDCA), and found that GDCA remarkably inhibited the growth of HCC in vivo and in vitro.
Conclusions
We conclude that the remarkably decreasing percentages of serum conjugated DCA may be closely associated with HCC, which may be induced by the reducing gut BSH-rich bacteria. The mechanisms may be correlated with conjugated DCA directly inhibiting the growth and migration of HCC cells. |
---|---|
ISSN: | 1936-0533 1936-0541 |
DOI: | 10.1007/s12072-022-10299-7 |