COV-DLS: Prediction of COVID-19 from X-Rays Using Enhanced Deep Transfer Learning Techniques

In this paper, modifications in neoteric architectures such as VGG16, VGG19, ResNet50, and InceptionV3 are proposed for the classification of COVID-19 using chest X-rays. The proposed architectures termed “COV-DLS” consist of two phases: heading model construction and classification. The heading mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of healthcare engineering 2022-04, Vol.2022, p.6216273-13
Hauptverfasser: Kumar, Vijay, Zarrad, Anis, Gupta, Rahul, Cheikhrouhou, Omar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, modifications in neoteric architectures such as VGG16, VGG19, ResNet50, and InceptionV3 are proposed for the classification of COVID-19 using chest X-rays. The proposed architectures termed “COV-DLS” consist of two phases: heading model construction and classification. The heading model construction phase utilizes four modified deep learning architectures, namely Modified-VGG16, Modified-VGG19, Modified-ResNet50, and Modified-InceptionV3. An attempt is made to modify these neoteric architectures by incorporating the average pooling and dense layers. The dropout layer is also added to prevent the overfitting problem. Two dense layers with different activation functions are also added. Thereafter, the output of these modified models is applied during the classification phase, when COV-DLS are applied on a COVID-19 chest X-ray image data set. Classification accuracy of 98.61% is achieved by Modified-VGG16, 97.22% by Modified-VGG19, 95.13% by Modified-ResNet50, and 99.31% by Modified-InceptionV3. COV-DLS outperforms existing deep learning models in terms of accuracy and F1-score.
ISSN:2040-2295
2040-2309
DOI:10.1155/2022/6216273