Springback Reduction of Ultra-High-Strength Martensitic Steel Sheet by Electrically Single-Pulsed Current

This paper investigates the reduction of springback by an electrically single-pulsed current for an ultra-high-strength martensitic steel sheet, MART1470 1.2t. In order to evaluate the springback reduction by the electric current, V-bending tests were performed with various parameter-sets (current d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-03, Vol.15 (7), p.2373
Hauptverfasser: Kim, Minki, Bae, Gihyun, Park, Namsu, Song, Jung Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the reduction of springback by an electrically single-pulsed current for an ultra-high-strength martensitic steel sheet, MART1470 1.2t. In order to evaluate the springback reduction by the electric current, V-bending tests were performed with various parameter-sets (current density and pulse duration). The amount of springback reduction was then calculated from the measured bent-angle of tested specimens. Experimental results show the springback is reduced with the increase in the current density, the pulse duration, and the electric energy density. In order to clarify thermal and athermal portions in the effect of electric current on the springback reduction, two ratios of force and isothermal flow stress were calculated based on bending theory. From the comparison of the ratios, it is noted that the athermal portion mainly contributes to the force relaxation, so the springback amount decreases. The athermal portion significantly increases as the electric energy density increases. Microstructures and micro-Vickers hardness were observed to confirm the applicability of the single-pulsed current to forming processes in practice. The springback reduction can be achieved up to 37.5% without severe changes in material properties when the electric energy density increases up to 281.3 mJ/mm . Achievable reduction is 85.4% for the electric energy density of 500 mJ/mm , but properties remarkably change.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15072373