RBM24 in the Post-Transcriptional Regulation of Cancer Progression: Anti-Tumor or Pro-Tumor Activity?
RNA-binding proteins are critical post-transcriptional regulators of gene expression. They are implicated in a wide range of physiological and pathological processes by modulating nearly every aspect of RNA metabolisms. Alterations in their expression and function disrupt tissue homeostasis and lead...
Gespeichert in:
Veröffentlicht in: | Cancers 2022-04, Vol.14 (7), p.1843 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RNA-binding proteins are critical post-transcriptional regulators of gene expression. They are implicated in a wide range of physiological and pathological processes by modulating nearly every aspect of RNA metabolisms. Alterations in their expression and function disrupt tissue homeostasis and lead to the occurrence of various cancers. RBM24 is a highly conserved protein that binds to a large spectrum of target mRNAs and regulates many post-transcriptional events ranging from pre-mRNA splicing to mRNA stability, polyadenylation and translation. Studies using different animal models indicate that it plays an essential role in promoting cellular differentiation during organogenesis and tissue regeneration. Evidence is also accumulating that its dysregulation frequently occurs across human cancers. In several tissues, RBM24 clearly functions as a tumor suppressor, which is consistent with its inhibitory potential on cell proliferation. However, upregulation of RBM24 in other cancers appears to promote tumor growth. There is a possibility that RBM24 displays both anti-tumor and pro-tumor activities, which may be regulated in part through differential interactions with its protein partners and by its post-translational modifications. This makes it a potential biomarker for diagnosis and prognosis, as well as a therapeutic target for cancer treatment. The challenge remains to determine the post-transcriptional mechanisms by which RBM24 modulates gene expression and tumor progression in a context- or background-dependent manner. This review discusses recent findings on the potential function of RBM24 in tumorigenesis and provides future directions for better understanding its regulatory role in cancer cells. |
---|---|
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers14071843 |