Overexpression of Programmed Cell Death 1 Prevents Doxorubicin-Induced Apoptosis Through Autophagy Induction in H9c2 Cardiomyocytes

Doxorubicin (DOX) is a potent chemotherapeutic agent; however, it causes severe heart injury via apoptosis induction in many patients. DOX-induced cardiotoxicity is attenuated by activated autophagy in the heart. We previously found that programmed cell death 1 (Pdcd1), an immune checkpoint receptor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular toxicology 2022-05, Vol.22 (5), p.462-476
Hauptverfasser: Kanno, Syu-ichi, Hara, Akiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Doxorubicin (DOX) is a potent chemotherapeutic agent; however, it causes severe heart injury via apoptosis induction in many patients. DOX-induced cardiotoxicity is attenuated by activated autophagy in the heart. We previously found that programmed cell death 1 (Pdcd1), an immune checkpoint receptor, inhibits DOX-induced cardiomyocyte apoptosis. In this study, we investigated whether autophagy contributes to the protective role of Pdcd1 against DOX-induced cardiomyocyte apoptosis. We also examined the role of Pdcd1 in DOX-induced apoptosis in cancer cells. Rat cardiomyocyte cell line H9c2 and human cancer cell lines K562 and MCF-7 were transfected with Pdcd1-encoding plasmid DNA to establish Pdcd1-overexpressing cells. Apoptosis and autophagy were determined using a luciferase assay. In H9c2 cells, DOX-induced apoptosis and viability reduction occurred through caspase activation. In particular, Pdcd1 overexpression activated the autophagy pathway through the inhibition of the mammalian target of rapamycin, a major negative regulator of autophagy. Moreover, it prevented DOX-induced cardiomyocyte apoptosis; a similar cardioprotection was observed when normal H9c2 cells (without Pdcd1 overexpression) were treated with rapamycin, an autophagy inducer, before the DOX treatment. Conversely, in cancer cells, Pdcd1 overexpression increased both basal and DOX-induced apoptosis. The role of Pdcd1 in DOX-induced apoptosis in cardiomyocytes and cancer cells was opposing. Pdcd1 signaling prevented DOX-induced apoptosis in cardiomyocytes, through autophagy induction; it enhanced DOX-induced apoptosis in cancer cells. Therefore, Pdcd1 could be a critical molecule for more effective and safer DOX chemotherapy.
ISSN:1530-7905
1559-0259
DOI:10.1007/s12012-022-09726-w