Evernimicin (SCH27899) inhibits both translation and 50S ribosomal subunit formation in Staphylococcus aureus cells

The effects of the everninomicin antibiotic evernimicin (SCH27899) on growing Staphylococcus aureus cells were investigated. Cellular growth rates and viable cell numbers decreased with increasing antibiotic concentrations. The rate of protein synthesis, measured as (35)S-amino acid incorporation, d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antimicrobial agents and chemotherapy 2000-06, Vol.44 (6), p.1413-1417
Hauptverfasser: Champney, W S, Tober, C L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of the everninomicin antibiotic evernimicin (SCH27899) on growing Staphylococcus aureus cells were investigated. Cellular growth rates and viable cell numbers decreased with increasing antibiotic concentrations. The rate of protein synthesis, measured as (35)S-amino acid incorporation, declined in parallel with the growth rate. Significantly, the formation of the 50S ribosomal subunit was inhibited in a dose-dependent fashion as well. 30S ribosomal subunit synthesis was not affected over the same concentration range. Evernimicin did not stimulate the breakdown of mature ribosomal subunits. Pulse-chase labeling experiments revealed a reduced rate of 50S subunit formation in drug-treated cells. Two erythromycin-resistant strains of S. aureus that carried the ermC gene were as sensitive as wild-type cells to antibiotic inhibition. In addition, two methicillin-resistant S. aureus organisms, one sensitive to erythromycin and one resistant to the macrolide, showed similar sensitivities to evernimicin. These results suggest a use for this novel antimicrobial agent against antibiotic-resistant bacterial infections.
ISSN:0066-4804
1098-6596
DOI:10.1128/AAC.44.6.1413-1417.2000