UHRF2 regulates cell cycle, epigenetics and gene expression to control the timing of retinal progenitor and ganglion cell differentiation

Ubiquitin-like, containing PHD and RING finger domains 2 (UHRF2) regulates cell cycle and binds 5-hydroxymethylcytosine (5hmC) to promote completion of DNA demethylation. Uhrf2-/- mice are without gross phenotypic defects; however, the cell cycle and epigenetic regulatory functions of Uhrf2 during r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2022-03, Vol.149 (6)
Hauptverfasser: Wang, Xiaohong, Sarver, Aaron L, Han, Qiyuan, Seiler, Christopher L, Xie, Chencheng, Lu, Huarui, Forster, Colleen L, Tretyakova, Natalia Y, Hallstrom, Timothy C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ubiquitin-like, containing PHD and RING finger domains 2 (UHRF2) regulates cell cycle and binds 5-hydroxymethylcytosine (5hmC) to promote completion of DNA demethylation. Uhrf2-/- mice are without gross phenotypic defects; however, the cell cycle and epigenetic regulatory functions of Uhrf2 during retinal tissue development are unclear. Retinal progenitor cells (RPCs) produce all retinal neurons and Müller glia in a predictable sequence controlled by the complex interplay between extrinsic signaling, cell cycle, epigenetic changes and cell-specific transcription factor activation. In this study, we find that UHRF2 accumulates in RPCs, and its conditional deletion from mouse RPCs reduced 5hmC, altered gene expressions and disrupted retinal cell proliferation and differentiation. Retinal ganglion cells were overproduced in Uhrf2-deficient retinae at the expense of VSX2+ RPCs. Most other cell types were transiently delayed in differentiation. Expression of each member of the Tet3/Uhrf2/Tdg active demethylation pathway was reduced in Uhrf2-deficient retinae, consistent with locally reduced 5hmC in their gene bodies. This study highlights a novel role of UHRF2 in controlling the transition from RPCs to differentiated cell by regulating cell cycle, epigenetic and gene expression decisions.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.195644