Nickel-adsorbed two-dimensional Nb2C MXene for enhanced energy storage applications

Owing to the tremendous energy storage capacity of two-dimensional transition metal carbides (MXenes), they have been efficiently utilized as a promising candidate in the field of super-capacitors. The energy storage capacity of MXenes can be further enhanced using metal dopants. Herein, we have rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2022-02, Vol.12 (8), p.4624-4634
Hauptverfasser: Zaheer, Ayesha, Syedah Afsheen Zahra, Iqbal, Muhammad Z, Mahmood, Asif, Khan, Salem Ayaz, Syed Rizwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Owing to the tremendous energy storage capacity of two-dimensional transition metal carbides (MXenes), they have been efficiently utilized as a promising candidate in the field of super-capacitors. The energy storage capacity of MXenes can be further enhanced using metal dopants. Herein, we have reported the synthesis of pristine and nickel doped niobium-carbide (Nb2C) MXenes, their computational and electrochemical properties. Upon introduction of nickel (Ni) the TDOS increases and a continuous DOS pattern is observed which indicates coupling between Ni and pristine MXene. The alterations in the DOS, predominantly in the nearby region of the Fermi level are profitable for our electrochemical applications. Additionally, the Ni-doped sample shows a significant capacitive performance of 666.67 F g−1 which can be attributed to the additional active sites generated by doping with Ni. It is worth noting that doped MXenes exhibited a capacitance retention of 81% up to 10 000 cycles. The current study unveils the opportunities of using MXenes with different metal dopants and hypothesize on their performance for energy storage devices.
ISSN:2046-2069
2046-2069
DOI:10.1039/d2ra00014h