c-Abl kinase-mediated phosphorylation of γ-tubulin promotes γ-tubulin ring complexes assembly and microtubule nucleation

Cytoskeletal microtubules (MTs) are nucleated from γ-tubulin ring complexes (γTuRCs) located at MT organizing centers (MTOCs), such as the centrosome. However, the exact regulatory mechanism of γTuRC assembly is not fully understood. Here, we showed that the nonreceptor tyrosine kinase c-Abl was ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2022-04, Vol.298 (4), p.101778-101778, Article 101778
Hauptverfasser: Wang, Guang-Fei, Dong, Qincai, Bai, Yu, Gu, Jing, Tao, Qingping, Yue, Junjie, Zhou, Rui, Niu, Xiayang, Zhu, Lin, Song, Caiwei, Zheng, Tong, Wang, Di, Jin, Yanwen, Liu, Hainan, Cao, Cheng, Liu, Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytoskeletal microtubules (MTs) are nucleated from γ-tubulin ring complexes (γTuRCs) located at MT organizing centers (MTOCs), such as the centrosome. However, the exact regulatory mechanism of γTuRC assembly is not fully understood. Here, we showed that the nonreceptor tyrosine kinase c-Abl was associated with and phosphorylated γ-tubulin, the essential component of the γTuRC, mainly on the Y443 residue by in vivo (immunofluorescence and immunoprecipitation) or in vitro (surface plasmon resonance) detection. We further demonstrated that phosphorylation deficiency significantly impaired γTuRC assembly, centrosome construction, and MT nucleation. c-Abl/Arg deletion and γ-tubulin Y443F mutation resulted in an abnormal morphology and compromised spindle function during mitosis, eventually causing uneven chromosome segregation. Our findings reveal that γTuRC assembly and nucleation function are regulated by Abl kinase-mediated γ-tubulin phosphorylation, revealing a fundamental mechanism that contributes to the maintenance of MT function.
ISSN:0021-9258
1083-351X
DOI:10.1016/j.jbc.2022.101778