Protein dynamics developments for the large scale and cryoEM: case study of ProDy 2.0

Cryo‐electron microscopy (cryoEM) has become a well established technique with the potential to produce structures of large and dynamic supramolecular complexes that are not amenable to traditional approaches for studying structure and dynamics. The size and low resolution of such molecular systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2022-04, Vol.78 (4), p.399-409
Hauptverfasser: Krieger, James Michael, Sorzano, Carlos Oscar S., Carazo, Jose Maria, Bahar, Ivet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cryo‐electron microscopy (cryoEM) has become a well established technique with the potential to produce structures of large and dynamic supramolecular complexes that are not amenable to traditional approaches for studying structure and dynamics. The size and low resolution of such molecular systems often make structural modelling and molecular dynamics simulations challenging and computationally expensive. This, together with the growing wealth of structural data arising from cryoEM and other structural biology methods, has driven a trend in the computational biophysics community towards the development of new pipelines for analysing global dynamics using coarse‐grained models and methods. At the centre of this trend has been a return to elastic network models, normal mode analysis (NMA) and ensemble analyses such as principal component analysis, and the growth of hybrid simulation methodologies that make use of them. Here, this field is reviewed with a focus on ProDy, the Python application programming interface for protein dynamics, which has been developed over the last decade. Two key developments in this area are highlighted: (i) ensemble NMA towards extracting and comparing the signature dynamics of homologous structures, aided by the recent SignDy pipeline, and (ii) pseudoatom fitting for more efficient global dynamics analyses of large and low‐resolution supramolecular assemblies from cryoEM, revisited in the CryoDy pipeline. It is believed that such a renewal and extension of old models and methods in new pipelines will be critical for driving the field forward into the next cryoEM revolution. New computational biophysics pipelines for analysing the global dynamics of structural ensembles and large, dynamic complexes resolved by cryoEM are reviewed.
ISSN:2059-7983
0907-4449
2059-7983
1399-0047
DOI:10.1107/S2059798322001966