Multiplexed Isobaric Quantitative Cross-Linking Reveals Drug-Induced Interactome Changes in Breast Cancer Cells

The study of protein structures and interactions is critical to understand their function. Chemical cross-linking of proteins with mass spectrometry (XL-MS) is a rapidly developing structural biology technique able to provide valuable insight into protein conformations and interactions, even as they...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-02, Vol.94 (6), p.2713-2722
Hauptverfasser: Wippel, Helisa H, Chavez, Juan D, Keller, Andrew D, Bruce, James E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of protein structures and interactions is critical to understand their function. Chemical cross-linking of proteins with mass spectrometry (XL-MS) is a rapidly developing structural biology technique able to provide valuable insight into protein conformations and interactions, even as they exist within their native cellular environment. Quantitative analysis of cross-links can reveal protein conformational and interaction changes that occur as a result of altered biological states, environmental conditions, or pharmacological perturbations. Our laboratory recently developed an isobaric quantitative protein interaction reporter (iqPIR) cross-linking strategy for comparative interactome studies. This strategy relies on isotope encoded chemical cross-linkers that have the same molecular mass yet produce unique and specific isotope signatures upon fragmentation in the mass spectrometer which can be used for quantitative analysis of cross-linked peptides. The initial set of iqPIR molecules allowed for binary comparisons. Here, we describe the in vivo application of an extended set of six iqPIR reagents (6-plex iqPIR), allowing multiplexed quantitative interactome analysis of up to six biological samples in a single LC–MS acquisition. Multiplexed iqPIR is demonstrated on MCF-7 breast cancer cells treated with five different Hsp90 inhibitors revealing large scale protein conformational and interaction changes specific to the molecular class of the inhibitors.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c02208