Ridge count thresholding to uncover coordinated networks during onset of the Covid-19 pandemic

In order to combat information operations (IO) and disinformation campaigns, one must look at the behaviors of the accounts pushing specific narratives and stories through social media, not at the content itself. In this work, we present a new process for extracting tweet storms and uncovering netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social network analysis and mining 2022-12, Vol.12 (1), p.45-45, Article 45
Hauptverfasser: Kirn, Spencer Lee, Hinders, Mark K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to combat information operations (IO) and disinformation campaigns, one must look at the behaviors of the accounts pushing specific narratives and stories through social media, not at the content itself. In this work, we present a new process for extracting tweet storms and uncovering networks of accounts that are working in a coordinated fashion using ridge count thresholding (RCT). To do this, we started with a dataset of 60 million individual tweets from the early weeks of the Covid-19 pandemic. Coherent topics are extracted from this data by testing three different preprocessing pipelines and applying Orthogonal Nonnegative Matrix Factorization (ONMF). The most effective preprocessing pipeline used hashtag preclustering to downselect the total dataset to the 7 million tweets that included the top hashtags. Each topic identified by ONMF is described by a topic-tweet signal, crafted using the time stamp included in each tweet’s metadata. These signals were broken down into tweet storms using RCT, which is calculated from the Dynamic Wavelet Fingerprint transform of each topic-tweet signal. Each tweet storm described a time of increased activity around a topic. Tweet storms identified in this way each represent some behavior in the underlying network. In total, we identified 39,817 total tweet storms that included about 2 million unique tweets. These tweet storms were used to identify networks of accounts that commonly co-occur within tweet storms to isolate those communities most responsible for driving narratives and pushing stories through social media. Through this process, we were able to identify 22 unique networks of accounts that were densely connected based on RCT tweet storm identification. Many of the identified networks exhibit obvious inauthentic behaviors that are potentially a part of an IO campaign.
ISSN:1869-5450
1869-5469
DOI:10.1007/s13278-022-00873-0