Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry
Eukaryotes duplicate their chromosomes during the cell cycle S phase using thousands of initiation sites, tunable fork speed and megabase-long spatio-temporal replication programs. The duration of S phase is fairly constant within a given cell type, but remarkably plastic during development, cell di...
Gespeichert in:
Veröffentlicht in: | Genes 2022-02, Vol.13 (3), p.408 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 408 |
container_title | Genes |
container_volume | 13 |
creator | Bialic, Marta Al Ahmad Nachar, Baraah Koźlak, Maria Coulon, Vincent Schwob, Etienne |
description | Eukaryotes duplicate their chromosomes during the cell cycle S phase using thousands of initiation sites, tunable fork speed and megabase-long spatio-temporal replication programs. The duration of S phase is fairly constant within a given cell type, but remarkably plastic during development, cell differentiation or various stresses. Characterizing the dynamics of S phase is important as replication defects are associated with genome instability, cancer and ageing. Methods to measure S-phase duration are so far indirect, and rely on mathematical modelling or require cell synchronization. We describe here a simple and robust method to measure S-phase duration in cell cultures using a dual EdU-BrdU pulse-labeling regimen with incremental thymidine chases, and quantification by flow cytometry of cells entering and exiting S phase. Importantly, the method requires neither cell synchronization nor genome engineering, thus avoiding possible artifacts. It measures the duration of unperturbed S phases, but also the effect of drugs or mutations on it. We show that this method can be used for both adherent and suspension cells, cell lines and primary cells of different types from human, mouse and
. Interestingly, the method revealed that several commonly-used cancer cell lines have a longer S phase compared to untransformed cells. |
doi_str_mv | 10.3390/genes13030408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8951228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644008495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-5573169eadaa536aecb952a186706e608a85cca94be1e8a926abb747f2d480783</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EolXpkSuKxAUOKeOvxL4gbdOWIi2iEuzZmiTe3awSu9hJ0f73OGxbtfXFlufnN573CHlP4YxzDV821tlIOXAQoF6RYwYlz4Vg8vWT8xE5jXEHaQlgAPItOeKSs1IX9JjsfliMU-jcJvuV32wx2uxiCjh23mXr4IdsEfeu2Qbv_BSzyvZ9zFZxxi8m7LPLdpWfh3aV3Ux9tHn1X2CJte1n5Kr3f7NqP_rBjmH_jrxZY6JO7_cTsrq6_F1d58uf375Xi2XeCKHHXMqS00JbbBElL9A2tZYMqSpKKGwBCpVsGtSittQq1KzAui5FuWatUFAqfkK-HnRvp3qwbWPdGLA3t6EbMOyNx848r7huazb-zigtKWOzwOeDwPbFs-vF0sx3wJN5GuCOJvbTfbPg_0w2jmboYpNsQmeTY4YVQgAooWVCP75Ad34KLlkxU0yABKETlR-oJvgYg10__oCCmUM3z0JP_Ien0z7SDxHzf0Elp2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642405049</pqid></control><display><type>article</type><title>Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Bialic, Marta ; Al Ahmad Nachar, Baraah ; Koźlak, Maria ; Coulon, Vincent ; Schwob, Etienne</creator><creatorcontrib>Bialic, Marta ; Al Ahmad Nachar, Baraah ; Koźlak, Maria ; Coulon, Vincent ; Schwob, Etienne</creatorcontrib><description>Eukaryotes duplicate their chromosomes during the cell cycle S phase using thousands of initiation sites, tunable fork speed and megabase-long spatio-temporal replication programs. The duration of S phase is fairly constant within a given cell type, but remarkably plastic during development, cell differentiation or various stresses. Characterizing the dynamics of S phase is important as replication defects are associated with genome instability, cancer and ageing. Methods to measure S-phase duration are so far indirect, and rely on mathematical modelling or require cell synchronization. We describe here a simple and robust method to measure S-phase duration in cell cultures using a dual EdU-BrdU pulse-labeling regimen with incremental thymidine chases, and quantification by flow cytometry of cells entering and exiting S phase. Importantly, the method requires neither cell synchronization nor genome engineering, thus avoiding possible artifacts. It measures the duration of unperturbed S phases, but also the effect of drugs or mutations on it. We show that this method can be used for both adherent and suspension cells, cell lines and primary cells of different types from human, mouse and
. Interestingly, the method revealed that several commonly-used cancer cell lines have a longer S phase compared to untransformed cells.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes13030408</identifier><identifier>PMID: 35327961</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aging ; Animals ; Antibodies ; Bromodeoxyuridine - metabolism ; Cell culture ; Cell cycle ; Cell differentiation ; Cell Division ; Chromosomes ; Chromosomes - metabolism ; Cyclin-dependent kinases ; Flow cytometry ; Flow Cytometry - methods ; Genomes ; Genomic instability ; Kinases ; Life Sciences ; Mathematical models ; Methods ; Mice ; Microscopy ; Replication initiation ; S Phase ; Synchronization ; Thymidine ; Tumor cell lines</subject><ispartof>Genes, 2022-02, Vol.13 (3), p.408</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-5573169eadaa536aecb952a186706e608a85cca94be1e8a926abb747f2d480783</citedby><cites>FETCH-LOGICAL-c449t-5573169eadaa536aecb952a186706e608a85cca94be1e8a926abb747f2d480783</cites><orcidid>0000-0002-9369-6419 ; 0000-0002-3168-8755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951228/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951228/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35327961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03796900$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bialic, Marta</creatorcontrib><creatorcontrib>Al Ahmad Nachar, Baraah</creatorcontrib><creatorcontrib>Koźlak, Maria</creatorcontrib><creatorcontrib>Coulon, Vincent</creatorcontrib><creatorcontrib>Schwob, Etienne</creatorcontrib><title>Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Eukaryotes duplicate their chromosomes during the cell cycle S phase using thousands of initiation sites, tunable fork speed and megabase-long spatio-temporal replication programs. The duration of S phase is fairly constant within a given cell type, but remarkably plastic during development, cell differentiation or various stresses. Characterizing the dynamics of S phase is important as replication defects are associated with genome instability, cancer and ageing. Methods to measure S-phase duration are so far indirect, and rely on mathematical modelling or require cell synchronization. We describe here a simple and robust method to measure S-phase duration in cell cultures using a dual EdU-BrdU pulse-labeling regimen with incremental thymidine chases, and quantification by flow cytometry of cells entering and exiting S phase. Importantly, the method requires neither cell synchronization nor genome engineering, thus avoiding possible artifacts. It measures the duration of unperturbed S phases, but also the effect of drugs or mutations on it. We show that this method can be used for both adherent and suspension cells, cell lines and primary cells of different types from human, mouse and
. Interestingly, the method revealed that several commonly-used cancer cell lines have a longer S phase compared to untransformed cells.</description><subject>Aging</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Bromodeoxyuridine - metabolism</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Cell Division</subject><subject>Chromosomes</subject><subject>Chromosomes - metabolism</subject><subject>Cyclin-dependent kinases</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Replication initiation</subject><subject>S Phase</subject><subject>Synchronization</subject><subject>Thymidine</subject><subject>Tumor cell lines</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkc1v1DAQxS0EolXpkSuKxAUOKeOvxL4gbdOWIi2iEuzZmiTe3awSu9hJ0f73OGxbtfXFlufnN573CHlP4YxzDV821tlIOXAQoF6RYwYlz4Vg8vWT8xE5jXEHaQlgAPItOeKSs1IX9JjsfliMU-jcJvuV32wx2uxiCjh23mXr4IdsEfeu2Qbv_BSzyvZ9zFZxxi8m7LPLdpWfh3aV3Ux9tHn1X2CJte1n5Kr3f7NqP_rBjmH_jrxZY6JO7_cTsrq6_F1d58uf375Xi2XeCKHHXMqS00JbbBElL9A2tZYMqSpKKGwBCpVsGtSittQq1KzAui5FuWatUFAqfkK-HnRvp3qwbWPdGLA3t6EbMOyNx848r7huazb-zigtKWOzwOeDwPbFs-vF0sx3wJN5GuCOJvbTfbPg_0w2jmboYpNsQmeTY4YVQgAooWVCP75Ad34KLlkxU0yABKETlR-oJvgYg10__oCCmUM3z0JP_Ien0z7SDxHzf0Elp2w</recordid><startdate>20220224</startdate><enddate>20220224</enddate><creator>Bialic, Marta</creator><creator>Al Ahmad Nachar, Baraah</creator><creator>Koźlak, Maria</creator><creator>Coulon, Vincent</creator><creator>Schwob, Etienne</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9369-6419</orcidid><orcidid>https://orcid.org/0000-0002-3168-8755</orcidid></search><sort><creationdate>20220224</creationdate><title>Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry</title><author>Bialic, Marta ; Al Ahmad Nachar, Baraah ; Koźlak, Maria ; Coulon, Vincent ; Schwob, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-5573169eadaa536aecb952a186706e608a85cca94be1e8a926abb747f2d480783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Bromodeoxyuridine - metabolism</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Cell Division</topic><topic>Chromosomes</topic><topic>Chromosomes - metabolism</topic><topic>Cyclin-dependent kinases</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Replication initiation</topic><topic>S Phase</topic><topic>Synchronization</topic><topic>Thymidine</topic><topic>Tumor cell lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bialic, Marta</creatorcontrib><creatorcontrib>Al Ahmad Nachar, Baraah</creatorcontrib><creatorcontrib>Koźlak, Maria</creatorcontrib><creatorcontrib>Coulon, Vincent</creatorcontrib><creatorcontrib>Schwob, Etienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bialic, Marta</au><au>Al Ahmad Nachar, Baraah</au><au>Koźlak, Maria</au><au>Coulon, Vincent</au><au>Schwob, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2022-02-24</date><risdate>2022</risdate><volume>13</volume><issue>3</issue><spage>408</spage><pages>408-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Eukaryotes duplicate their chromosomes during the cell cycle S phase using thousands of initiation sites, tunable fork speed and megabase-long spatio-temporal replication programs. The duration of S phase is fairly constant within a given cell type, but remarkably plastic during development, cell differentiation or various stresses. Characterizing the dynamics of S phase is important as replication defects are associated with genome instability, cancer and ageing. Methods to measure S-phase duration are so far indirect, and rely on mathematical modelling or require cell synchronization. We describe here a simple and robust method to measure S-phase duration in cell cultures using a dual EdU-BrdU pulse-labeling regimen with incremental thymidine chases, and quantification by flow cytometry of cells entering and exiting S phase. Importantly, the method requires neither cell synchronization nor genome engineering, thus avoiding possible artifacts. It measures the duration of unperturbed S phases, but also the effect of drugs or mutations on it. We show that this method can be used for both adherent and suspension cells, cell lines and primary cells of different types from human, mouse and
. Interestingly, the method revealed that several commonly-used cancer cell lines have a longer S phase compared to untransformed cells.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35327961</pmid><doi>10.3390/genes13030408</doi><orcidid>https://orcid.org/0000-0002-9369-6419</orcidid><orcidid>https://orcid.org/0000-0002-3168-8755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4425 |
ispartof | Genes, 2022-02, Vol.13 (3), p.408 |
issn | 2073-4425 2073-4425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8951228 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Aging Animals Antibodies Bromodeoxyuridine - metabolism Cell culture Cell cycle Cell differentiation Cell Division Chromosomes Chromosomes - metabolism Cyclin-dependent kinases Flow cytometry Flow Cytometry - methods Genomes Genomic instability Kinases Life Sciences Mathematical models Methods Mice Microscopy Replication initiation S Phase Synchronization Thymidine Tumor cell lines |
title | Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20S-Phase%20Duration%20from%20Asynchronous%20Cells%20Using%20Dual%20EdU-BrdU%20Pulse-Chase%20Labeling%20Flow%20Cytometry&rft.jtitle=Genes&rft.au=Bialic,%20Marta&rft.date=2022-02-24&rft.volume=13&rft.issue=3&rft.spage=408&rft.pages=408-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes13030408&rft_dat=%3Cproquest_pubme%3E2644008495%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642405049&rft_id=info:pmid/35327961&rfr_iscdi=true |