Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry

Eukaryotes duplicate their chromosomes during the cell cycle S phase using thousands of initiation sites, tunable fork speed and megabase-long spatio-temporal replication programs. The duration of S phase is fairly constant within a given cell type, but remarkably plastic during development, cell di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2022-02, Vol.13 (3), p.408
Hauptverfasser: Bialic, Marta, Al Ahmad Nachar, Baraah, Koźlak, Maria, Coulon, Vincent, Schwob, Etienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eukaryotes duplicate their chromosomes during the cell cycle S phase using thousands of initiation sites, tunable fork speed and megabase-long spatio-temporal replication programs. The duration of S phase is fairly constant within a given cell type, but remarkably plastic during development, cell differentiation or various stresses. Characterizing the dynamics of S phase is important as replication defects are associated with genome instability, cancer and ageing. Methods to measure S-phase duration are so far indirect, and rely on mathematical modelling or require cell synchronization. We describe here a simple and robust method to measure S-phase duration in cell cultures using a dual EdU-BrdU pulse-labeling regimen with incremental thymidine chases, and quantification by flow cytometry of cells entering and exiting S phase. Importantly, the method requires neither cell synchronization nor genome engineering, thus avoiding possible artifacts. It measures the duration of unperturbed S phases, but also the effect of drugs or mutations on it. We show that this method can be used for both adherent and suspension cells, cell lines and primary cells of different types from human, mouse and . Interestingly, the method revealed that several commonly-used cancer cell lines have a longer S phase compared to untransformed cells.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes13030408