Nonadiabatic Nano-optical Tunneling of Photoelectrons in Plasmonic Near-Fields

Nonadiabatic nano-optical electron tunneling in the transition region between multiphoton-induced emission and adiabatic tunnel emission is explored in the near-field of plasmonic nanostructures. For Keldysh γ values between ∼1.3 and ∼2.2, measured photoemission spectra show strong-field recollision...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-03, Vol.22 (6), p.2303-2308
Hauptverfasser: Lovász, Béla, Sándor, Péter, Kiss, Gellért-Zsolt, Bánhegyi, Balázs, Rácz, Péter, Pápa, Zsuzsanna, Budai, Judit, Prietl, Christine, Krenn, Joachim R, Dombi, Péter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonadiabatic nano-optical electron tunneling in the transition region between multiphoton-induced emission and adiabatic tunnel emission is explored in the near-field of plasmonic nanostructures. For Keldysh γ values between ∼1.3 and ∼2.2, measured photoemission spectra show strong-field recollision driven by the nanoscale near-field. At the same time, the photoemission yield shows an intensity scaling with a constant nonlinearity, which is characteristic for multiphoton-induced emission. Our observations in this transition region were well reproduced with the numerical solution of Schrödinger’s equation, mimicking the nanoscale geometry of the field. This way, we determined the boundaries and nature of nonadiabatic tunneling photoemission, building on a key advantage of a nanoplasmonic system, namely, that high-field-driven recollision events and their signature in the photoemission spectrum can be observed more efficiently due to significant nanoplasmonic field enhancement factors.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c04651