An Intelligent Multiattribute Decision-Support Framework Based on Parameterization of Neutrosophic Hypersoft Set

Hypersoft set is a novel area of interest which is able to tackle the real-world scenarios where classification of parameters into their respective sub-parametric values in the form of overlapping sets is mandatory. It employs a new approximate mapping which considers such sets in the form of sub-pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022, Vol.2022, p.6229947-20
Hauptverfasser: Rahman, Atiqe Ur, Saeed, Muhammad, Alburaikan, Alhanouf, Khalifa, Hamiden Abd El-Wahed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypersoft set is a novel area of interest which is able to tackle the real-world scenarios where classification of parameters into their respective sub-parametric values in the form of overlapping sets is mandatory. It employs a new approximate mapping which considers such sets in the form of sub-parametric tuples as its domain. The existing soft set-like structures are insufficient to tackle such kind of situations. This research intends to establish a novel concept of parameterization of fuzzy set under hypersoft set environment with uncertain components of intuitionistic fuzzy set and neutrosophic set. Two novel structures, i.e., fuzzy parameterized intuitionistic fuzzy hypersoft set (fpifhs-set) and fuzzy parameterized neutrosophic hypersoft set (fpnhs-set), are developed by employing algebraic techniques like theoretic, analytical, pictorial, and algorithmic techniques. After characterizing the elementary properties and set-theoretic operations of fpifhs-set and fpnhs-set, two novel algorithms are proposed to solve real-life decision-making COVID-19 problem. The results of both algorithms are compared with related already established models through certain evaluating features to judge the advantageous aspects of the proposed study. The generalization of the proposed models is discussed by describing some of their particular cases.
ISSN:1687-5265
1687-5273
DOI:10.1155/2022/6229947