A mathematical analysis of focal adhesion lifetimes and their effect on cell motility

By analyzing the distributions of focal adhesion (FA) lifetimes from different cell types, we found that a gamma distribution best matched the experimental distributions. In all but one case, it was a unimodal, non-symmetric gamma distribution. We used a mathematical model of cell motion to help und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2022-03, Vol.121 (6), p.1070-1080
Hauptverfasser: Rosen, Mary Ellen, Dallon, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By analyzing the distributions of focal adhesion (FA) lifetimes from different cell types, we found that a gamma distribution best matched the experimental distributions. In all but one case, it was a unimodal, non-symmetric gamma distribution. We used a mathematical model of cell motion to help understand the mechanics and data behind the FA lifetime distributions. The model uses a detach-rate function to determine how long an FA will persist before it detaches. The detach-rate function that produced distributions with a best-fit gamma curve that closely matched that of the data was both force and time dependent. Using the data gathered from the matching simulations, we calculated both the cell speed and mean FA lifetime and compared them. Where available, we also compared this relationship to that of the experimental data and found that the simulation reasonably matches it in most cases. In both the simulations and experimental data, the cell speed and mean FA lifetime are related, with longer mean lifetimes being indicative of slower speeds. We suspect that one of the main predictors of cell speed for migrating cells is the distribution of the FA lifetimes.
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2022.02.003