Room-temperature skyrmion lattice in a layered magnet (Fe0.5Co0.5)5GeTe2
Novel magnetic ground states have been stabilized in two-dimensional (2D) magnets such as skyrmions, with the potential next-generation information technology. Here, we report the experimental observation of a Néel-type skyrmion lattice at room temperature in a single-phase, layered 2D magnet, speci...
Gespeichert in:
Veröffentlicht in: | Science advances 2022-03, Vol.8 (12), p.eabm7103-eabm7103 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel magnetic ground states have been stabilized in two-dimensional (2D) magnets such as skyrmions, with the potential next-generation information technology. Here, we report the experimental observation of a Néel-type skyrmion lattice at room temperature in a single-phase, layered 2D magnet, specifically a 50% Co-doped Fe5GeTe2 (FCGT) system. The thickness-dependent magnetic domain size follows Kittel's law. The static spin textures and spin dynamics in FCGT nanoflakes were studied by Lorentz electron microscopy, variable-temperature magnetic force microscopy, micromagnetic simulations, and magnetotransport measurements. Current-induced skyrmion lattice motion was observed at room temperature, with a threshold current density, jth = 1 × 106 A/cm2. This discovery of a skyrmion lattice at room temperature in a noncentrosymmetric material opens the way for layered device applications and provides an ideal platform for studies of topological and quantum effects in 2D. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.abm7103 |