Hydrogen Sulfide Induces Keap1 S-sulfhydration and Suppresses Diabetes-Accelerated Atherosclerosis via Nrf2 Activation

Hydrogen sulfide (H2S) has been shown to have powerful antioxidative and anti-inflammatory properties that can regulate multiple cardiovascular functions. However, its precise role in diabetes-accelerated atherosclerosis remains unclear. We report here that H2S reduced aortic atherosclerotic plaque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2016-10, Vol.65 (10), p.3171-3184
Hauptverfasser: Xie, Liping, Gu, Yue, Wen, Mingliang, Zhao, Shuang, Wang, Wan, Ma, Yan, Meng, Guoliang, Han, Yi, Wang, Yuhui, Liu, George, Moore, Philip K, Wang, Xin, Wang, Hong, Zhang, Zhiren, Yu, Ying, Ferro, Albert, Huang, Zhengrong, Ji, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen sulfide (H2S) has been shown to have powerful antioxidative and anti-inflammatory properties that can regulate multiple cardiovascular functions. However, its precise role in diabetes-accelerated atherosclerosis remains unclear. We report here that H2S reduced aortic atherosclerotic plaque formation with reduction in superoxide (O2 (-)) generation and the adhesion molecules in streptozotocin (STZ)-induced LDLr(-/-) mice but not in LDLr(-/-)Nrf2(-/-) mice. In vitro, H2S inhibited foam cell formation, decreased O2 (-) generation, and increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and consequently heme oxygenase 1 (HO-1) expression upregulation in high glucose (HG) plus oxidized LDL (ox-LDL)-treated primary peritoneal macrophages from wild-type but not Nrf2(-/-) mice. H2S also decreased O2 (-) and adhesion molecule levels and increased Nrf2 nuclear translocation and HO-1 expression, which were suppressed by Nrf2 knockdown in HG/ox-LDL-treated endothelial cells. H2S increased S-sulfhydration of Keap1, induced Nrf2 dissociation from Keap1, enhanced Nrf2 nuclear translocation, and inhibited O2 (-) generation, which were abrogated after Keap1 mutated at Cys151, but not Cys273, in endothelial cells. Collectively, H2S attenuates diabetes-accelerated atherosclerosis, which may be related to inhibition of oxidative stress via Keap1 sulfhydrylation at Cys151 to activate Nrf2 signaling. This may provide a novel therapeutic target to prevent atherosclerosis in the context of diabetes.
ISSN:0012-1797
1939-327X
DOI:10.2337/db16-0020