Direct characterization of cis-regulatory elements and functional dissection of complex genetic associations using HCR–FlowFISH
Effective interpretation of genome function and genetic variation requires a shift from epigenetic mapping of cis -regulatory elements (CREs) to characterization of endogenous function. We developed hybridization chain reaction fluorescence in situ hybridization coupled with flow cytometry (HCR–Flow...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2021-08, Vol.53 (8), p.1166-1176 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effective interpretation of genome function and genetic variation requires a shift from epigenetic mapping of
cis
-regulatory elements (CREs) to characterization of endogenous function. We developed hybridization chain reaction fluorescence in situ hybridization coupled with flow cytometry (HCR–FlowFISH), a broadly applicable approach to characterize CRISPR-perturbed CREs via accurate quantification of native transcripts, alongside CRISPR activity screen analysis (CASA), a hierarchical Bayesian model to quantify CRE activity. Across >325,000 perturbations, we provide evidence that CREs can regulate multiple genes, skip over the nearest gene and display activating and/or silencing effects. At the cholesterol-level-associated
FADS
locus, we combine endogenous screens with reporter assays to exhaustively characterize multiple genome-wide association signals, functionally nominate causal variants and, importantly, identify their target genes.
HCR–FlowFISH is a new approach to characterize CRISPR-perturbed
cis
-regulatory elements (CREs) via accurate quantification of native transcripts, alongside CRISPR activity screen analysis (CASA), a hierarchical Bayesian model to quantify CRE activity. |
---|---|
ISSN: | 1061-4036 1546-1718 1546-1718 |
DOI: | 10.1038/s41588-021-00900-4 |