Deep learning of early brain imaging to predict post-arrest electroencephalography

Guidelines recommend use of computerized tomography (CT) and electroencephalography (EEG) in post-arrest prognostication. Strong associations between CT and EEG might obviate the need to acquire both modalities. We quantified these associations via deep learning. We performed a single-center, retros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resuscitation 2022-03, Vol.172, p.17-23
Hauptverfasser: Elmer, Jonathan, Liu, Chang, Pease, Matthew, Arefan, Dooman, Coppler, Patrick J., Flickinger, Katharyn L., Mettenburg, Joseph M., Baldwin, Maria E., Barot, Niravkumar, Wu, Shandong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue
container_start_page 17
container_title Resuscitation
container_volume 172
creator Elmer, Jonathan
Liu, Chang
Pease, Matthew
Arefan, Dooman
Coppler, Patrick J.
Flickinger, Katharyn L.
Mettenburg, Joseph M.
Baldwin, Maria E.
Barot, Niravkumar
Wu, Shandong
description Guidelines recommend use of computerized tomography (CT) and electroencephalography (EEG) in post-arrest prognostication. Strong associations between CT and EEG might obviate the need to acquire both modalities. We quantified these associations via deep learning. We performed a single-center, retrospective study including comatose patients hospitalized after cardiac arrest. We extracted brain CT DICOMs, resized and registered each to a standard anatomical atlas, performed skull stripping and windowed images to optimize contrast of the gray-white junction. We classified initial EEG as generalized suppression, other highly pathological findings or benign activity. We extracted clinical information available on presentation from our prospective registry. We trained three machine learning (ML) models to predict EEG from clinical covariates. We used three state-of-the-art approaches to build multi-headed deep learning models using similar model architectures. Finally, we combined the best performing clinical and imaging models. We evaluated discrimination in test sets. We included 500 patients, of whom 218 (44%) had benign EEG findings, 135 (27%) showed generalized suppression and 147 (29%) had other highly pathological findings that were most commonly (93%) burst suppression with identical bursts. Clinical ML models had moderate discrimination (test set AUCs 0.73–0.80). Image-based deep learning performed worse (test set AUCs 0.51–0.69), particularly discriminating benign from highly pathological findings. Adding image-based deep learning to clinical models improved prediction of generalized suppression due to accurate detection of severe cerebral edema. CT and EEG provide complementary information about post-arrest brain injury. Our results do not support selective acquisition of only one of these modalities, except in the most severely injured patients.
doi_str_mv 10.1016/j.resuscitation.2022.01.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8923981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300957222000053</els_id><sourcerecordid>2621249371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-91b1e2acc212e26720149bc470f228166b6edc669849871583b31b16f4f50f243</originalsourceid><addsrcrecordid>eNqNkVtr3DAQhUVpaDZp_0Iw9KUvdkYXyxaFQklzg0AgJM9C1o53tXgtV9IG9t9XZpPQvOVJQvPNmaM5hHynUFGg8nxTBYy7aF0yyfmxYsBYBbQCEJ_IgrYNL2ndwGeyAA5Qqrphx-Qkxg0A8Fo1X8gxr0FksF6Qhz-IUzGgCaMbV4Xvi3wd9kUXjBsLtzWr-Tn5Ygq4dDYVk4-pNCFbSAUOaFPwOFqc1mbwq2Cm9f4rOerNEPHby3lKnq4uHy9uyrv769uL33elFYqmUtGOIjPWMsqQyYYBFaqzooGesZZK2UlcWilVK1Tb0LrlHc8tshd9nRHBT8mvg-6067YZxTEFM-gpZNdhr71x-n1ldGu98s-6VYyrlmaBHy8Cwf_d5Q_prYsWh8GM6HdRM5mtCcWbGf15QG3wMQbs38ZQ0HMqeqPfpaLnVDRQnVPJ3Wf_O33rfY0hA5cHAPO-nh0GnYXmtS5dyCvWS-8-NOgfSnmn0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621249371</pqid></control><display><type>article</type><title>Deep learning of early brain imaging to predict post-arrest electroencephalography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Elmer, Jonathan ; Liu, Chang ; Pease, Matthew ; Arefan, Dooman ; Coppler, Patrick J. ; Flickinger, Katharyn L. ; Mettenburg, Joseph M. ; Baldwin, Maria E. ; Barot, Niravkumar ; Wu, Shandong</creator><creatorcontrib>Elmer, Jonathan ; Liu, Chang ; Pease, Matthew ; Arefan, Dooman ; Coppler, Patrick J. ; Flickinger, Katharyn L. ; Mettenburg, Joseph M. ; Baldwin, Maria E. ; Barot, Niravkumar ; Wu, Shandong</creatorcontrib><description>Guidelines recommend use of computerized tomography (CT) and electroencephalography (EEG) in post-arrest prognostication. Strong associations between CT and EEG might obviate the need to acquire both modalities. We quantified these associations via deep learning. We performed a single-center, retrospective study including comatose patients hospitalized after cardiac arrest. We extracted brain CT DICOMs, resized and registered each to a standard anatomical atlas, performed skull stripping and windowed images to optimize contrast of the gray-white junction. We classified initial EEG as generalized suppression, other highly pathological findings or benign activity. We extracted clinical information available on presentation from our prospective registry. We trained three machine learning (ML) models to predict EEG from clinical covariates. We used three state-of-the-art approaches to build multi-headed deep learning models using similar model architectures. Finally, we combined the best performing clinical and imaging models. We evaluated discrimination in test sets. We included 500 patients, of whom 218 (44%) had benign EEG findings, 135 (27%) showed generalized suppression and 147 (29%) had other highly pathological findings that were most commonly (93%) burst suppression with identical bursts. Clinical ML models had moderate discrimination (test set AUCs 0.73–0.80). Image-based deep learning performed worse (test set AUCs 0.51–0.69), particularly discriminating benign from highly pathological findings. Adding image-based deep learning to clinical models improved prediction of generalized suppression due to accurate detection of severe cerebral edema. CT and EEG provide complementary information about post-arrest brain injury. Our results do not support selective acquisition of only one of these modalities, except in the most severely injured patients.</description><identifier>ISSN: 0300-9572</identifier><identifier>EISSN: 1873-1570</identifier><identifier>DOI: 10.1016/j.resuscitation.2022.01.004</identifier><identifier>PMID: 35041875</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Brain - diagnostic imaging ; Brain injury ; Cardiac arrest ; CT imaging ; Deep Learning ; Electroencephalography ; Electroencephalography - methods ; Humans ; Machine learning ; Neuroimaging ; Prognosis ; Retrospective Studies</subject><ispartof>Resuscitation, 2022-03, Vol.172, p.17-23</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-91b1e2acc212e26720149bc470f228166b6edc669849871583b31b16f4f50f243</citedby><cites>FETCH-LOGICAL-c491t-91b1e2acc212e26720149bc470f228166b6edc669849871583b31b16f4f50f243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.resuscitation.2022.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35041875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elmer, Jonathan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Pease, Matthew</creatorcontrib><creatorcontrib>Arefan, Dooman</creatorcontrib><creatorcontrib>Coppler, Patrick J.</creatorcontrib><creatorcontrib>Flickinger, Katharyn L.</creatorcontrib><creatorcontrib>Mettenburg, Joseph M.</creatorcontrib><creatorcontrib>Baldwin, Maria E.</creatorcontrib><creatorcontrib>Barot, Niravkumar</creatorcontrib><creatorcontrib>Wu, Shandong</creatorcontrib><title>Deep learning of early brain imaging to predict post-arrest electroencephalography</title><title>Resuscitation</title><addtitle>Resuscitation</addtitle><description>Guidelines recommend use of computerized tomography (CT) and electroencephalography (EEG) in post-arrest prognostication. Strong associations between CT and EEG might obviate the need to acquire both modalities. We quantified these associations via deep learning. We performed a single-center, retrospective study including comatose patients hospitalized after cardiac arrest. We extracted brain CT DICOMs, resized and registered each to a standard anatomical atlas, performed skull stripping and windowed images to optimize contrast of the gray-white junction. We classified initial EEG as generalized suppression, other highly pathological findings or benign activity. We extracted clinical information available on presentation from our prospective registry. We trained three machine learning (ML) models to predict EEG from clinical covariates. We used three state-of-the-art approaches to build multi-headed deep learning models using similar model architectures. Finally, we combined the best performing clinical and imaging models. We evaluated discrimination in test sets. We included 500 patients, of whom 218 (44%) had benign EEG findings, 135 (27%) showed generalized suppression and 147 (29%) had other highly pathological findings that were most commonly (93%) burst suppression with identical bursts. Clinical ML models had moderate discrimination (test set AUCs 0.73–0.80). Image-based deep learning performed worse (test set AUCs 0.51–0.69), particularly discriminating benign from highly pathological findings. Adding image-based deep learning to clinical models improved prediction of generalized suppression due to accurate detection of severe cerebral edema. CT and EEG provide complementary information about post-arrest brain injury. Our results do not support selective acquisition of only one of these modalities, except in the most severely injured patients.</description><subject>Brain - diagnostic imaging</subject><subject>Brain injury</subject><subject>Cardiac arrest</subject><subject>CT imaging</subject><subject>Deep Learning</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Neuroimaging</subject><subject>Prognosis</subject><subject>Retrospective Studies</subject><issn>0300-9572</issn><issn>1873-1570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkVtr3DAQhUVpaDZp_0Iw9KUvdkYXyxaFQklzg0AgJM9C1o53tXgtV9IG9t9XZpPQvOVJQvPNmaM5hHynUFGg8nxTBYy7aF0yyfmxYsBYBbQCEJ_IgrYNL2ndwGeyAA5Qqrphx-Qkxg0A8Fo1X8gxr0FksF6Qhz-IUzGgCaMbV4Xvi3wd9kUXjBsLtzWr-Tn5Ygq4dDYVk4-pNCFbSAUOaFPwOFqc1mbwq2Cm9f4rOerNEPHby3lKnq4uHy9uyrv769uL33elFYqmUtGOIjPWMsqQyYYBFaqzooGesZZK2UlcWilVK1Tb0LrlHc8tshd9nRHBT8mvg-6067YZxTEFM-gpZNdhr71x-n1ldGu98s-6VYyrlmaBHy8Cwf_d5Q_prYsWh8GM6HdRM5mtCcWbGf15QG3wMQbs38ZQ0HMqeqPfpaLnVDRQnVPJ3Wf_O33rfY0hA5cHAPO-nh0GnYXmtS5dyCvWS-8-NOgfSnmn0g</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Elmer, Jonathan</creator><creator>Liu, Chang</creator><creator>Pease, Matthew</creator><creator>Arefan, Dooman</creator><creator>Coppler, Patrick J.</creator><creator>Flickinger, Katharyn L.</creator><creator>Mettenburg, Joseph M.</creator><creator>Baldwin, Maria E.</creator><creator>Barot, Niravkumar</creator><creator>Wu, Shandong</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220301</creationdate><title>Deep learning of early brain imaging to predict post-arrest electroencephalography</title><author>Elmer, Jonathan ; Liu, Chang ; Pease, Matthew ; Arefan, Dooman ; Coppler, Patrick J. ; Flickinger, Katharyn L. ; Mettenburg, Joseph M. ; Baldwin, Maria E. ; Barot, Niravkumar ; Wu, Shandong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-91b1e2acc212e26720149bc470f228166b6edc669849871583b31b16f4f50f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain - diagnostic imaging</topic><topic>Brain injury</topic><topic>Cardiac arrest</topic><topic>CT imaging</topic><topic>Deep Learning</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Neuroimaging</topic><topic>Prognosis</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elmer, Jonathan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Pease, Matthew</creatorcontrib><creatorcontrib>Arefan, Dooman</creatorcontrib><creatorcontrib>Coppler, Patrick J.</creatorcontrib><creatorcontrib>Flickinger, Katharyn L.</creatorcontrib><creatorcontrib>Mettenburg, Joseph M.</creatorcontrib><creatorcontrib>Baldwin, Maria E.</creatorcontrib><creatorcontrib>Barot, Niravkumar</creatorcontrib><creatorcontrib>Wu, Shandong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Resuscitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elmer, Jonathan</au><au>Liu, Chang</au><au>Pease, Matthew</au><au>Arefan, Dooman</au><au>Coppler, Patrick J.</au><au>Flickinger, Katharyn L.</au><au>Mettenburg, Joseph M.</au><au>Baldwin, Maria E.</au><au>Barot, Niravkumar</au><au>Wu, Shandong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning of early brain imaging to predict post-arrest electroencephalography</atitle><jtitle>Resuscitation</jtitle><addtitle>Resuscitation</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>172</volume><spage>17</spage><epage>23</epage><pages>17-23</pages><issn>0300-9572</issn><eissn>1873-1570</eissn><abstract>Guidelines recommend use of computerized tomography (CT) and electroencephalography (EEG) in post-arrest prognostication. Strong associations between CT and EEG might obviate the need to acquire both modalities. We quantified these associations via deep learning. We performed a single-center, retrospective study including comatose patients hospitalized after cardiac arrest. We extracted brain CT DICOMs, resized and registered each to a standard anatomical atlas, performed skull stripping and windowed images to optimize contrast of the gray-white junction. We classified initial EEG as generalized suppression, other highly pathological findings or benign activity. We extracted clinical information available on presentation from our prospective registry. We trained three machine learning (ML) models to predict EEG from clinical covariates. We used three state-of-the-art approaches to build multi-headed deep learning models using similar model architectures. Finally, we combined the best performing clinical and imaging models. We evaluated discrimination in test sets. We included 500 patients, of whom 218 (44%) had benign EEG findings, 135 (27%) showed generalized suppression and 147 (29%) had other highly pathological findings that were most commonly (93%) burst suppression with identical bursts. Clinical ML models had moderate discrimination (test set AUCs 0.73–0.80). Image-based deep learning performed worse (test set AUCs 0.51–0.69), particularly discriminating benign from highly pathological findings. Adding image-based deep learning to clinical models improved prediction of generalized suppression due to accurate detection of severe cerebral edema. CT and EEG provide complementary information about post-arrest brain injury. Our results do not support selective acquisition of only one of these modalities, except in the most severely injured patients.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>35041875</pmid><doi>10.1016/j.resuscitation.2022.01.004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0300-9572
ispartof Resuscitation, 2022-03, Vol.172, p.17-23
issn 0300-9572
1873-1570
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8923981
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Brain - diagnostic imaging
Brain injury
Cardiac arrest
CT imaging
Deep Learning
Electroencephalography
Electroencephalography - methods
Humans
Machine learning
Neuroimaging
Prognosis
Retrospective Studies
title Deep learning of early brain imaging to predict post-arrest electroencephalography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20of%20early%20brain%20imaging%20to%20predict%20post-arrest%20electroencephalography&rft.jtitle=Resuscitation&rft.au=Elmer,%20Jonathan&rft.date=2022-03-01&rft.volume=172&rft.spage=17&rft.epage=23&rft.pages=17-23&rft.issn=0300-9572&rft.eissn=1873-1570&rft_id=info:doi/10.1016/j.resuscitation.2022.01.004&rft_dat=%3Cproquest_pubme%3E2621249371%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621249371&rft_id=info:pmid/35041875&rft_els_id=S0300957222000053&rfr_iscdi=true