Deep learning of early brain imaging to predict post-arrest electroencephalography
Guidelines recommend use of computerized tomography (CT) and electroencephalography (EEG) in post-arrest prognostication. Strong associations between CT and EEG might obviate the need to acquire both modalities. We quantified these associations via deep learning. We performed a single-center, retros...
Gespeichert in:
Veröffentlicht in: | Resuscitation 2022-03, Vol.172, p.17-23 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Guidelines recommend use of computerized tomography (CT) and electroencephalography (EEG) in post-arrest prognostication. Strong associations between CT and EEG might obviate the need to acquire both modalities. We quantified these associations via deep learning.
We performed a single-center, retrospective study including comatose patients hospitalized after cardiac arrest. We extracted brain CT DICOMs, resized and registered each to a standard anatomical atlas, performed skull stripping and windowed images to optimize contrast of the gray-white junction. We classified initial EEG as generalized suppression, other highly pathological findings or benign activity. We extracted clinical information available on presentation from our prospective registry. We trained three machine learning (ML) models to predict EEG from clinical covariates. We used three state-of-the-art approaches to build multi-headed deep learning models using similar model architectures. Finally, we combined the best performing clinical and imaging models. We evaluated discrimination in test sets.
We included 500 patients, of whom 218 (44%) had benign EEG findings, 135 (27%) showed generalized suppression and 147 (29%) had other highly pathological findings that were most commonly (93%) burst suppression with identical bursts. Clinical ML models had moderate discrimination (test set AUCs 0.73–0.80). Image-based deep learning performed worse (test set AUCs 0.51–0.69), particularly discriminating benign from highly pathological findings. Adding image-based deep learning to clinical models improved prediction of generalized suppression due to accurate detection of severe cerebral edema.
CT and EEG provide complementary information about post-arrest brain injury. Our results do not support selective acquisition of only one of these modalities, except in the most severely injured patients. |
---|---|
ISSN: | 0300-9572 1873-1570 |
DOI: | 10.1016/j.resuscitation.2022.01.004 |