A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets
Xerostomia (subjective complaint of dry mouth) is commonly associated with salivary gland hypofunction. Molecular mechanisms associated with xerostomia pathobiology are poorly understood, thus hampering drug development. Our objectives were to (i) use text-mining tools to investigate xerostomia and...
Gespeichert in:
Veröffentlicht in: | Journal of clinical medicine 2022-03, Vol.11 (5), p.1442 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 1442 |
container_title | Journal of clinical medicine |
container_volume | 11 |
creator | Beckman, Micaela F Brennan, Elizabeth J Igba, Chika K Brennan, Michael T Mougeot, Farah B Mougeot, Jean-Luc C |
description | Xerostomia (subjective complaint of dry mouth) is commonly associated with salivary gland hypofunction. Molecular mechanisms associated with xerostomia pathobiology are poorly understood, thus hampering drug development. Our objectives were to (i) use text-mining tools to investigate xerostomia and dry mouth concepts, (ii) identify associated molecular interactions involving genes as candidate drug targets, and (iii) determine how drugs currently used in clinical trials may impact these genes and associated pathways. PubMed and PubMed Central were used to identify search terms associated with xerostomia and/or dry mouth. Search terms were queried in pubmed2ensembl. Protein-protein interaction (PPI) networks were determined using the gene/protein network visualization program search tool for recurring instances of neighboring genes (STRING). A similar program, Cytoscape, was used to determine PPIs of overlapping gene sets. The drug-gene interaction database (DGIdb) and the clinicaltrials.gov database were used to identify potential drug targets from the xerostomia/dry mouth PPI gene set. We identified 64 search terms in common between xerostomia and dry mouth. STRING confirmed PPIs between identified genes (CL = 0.90). Cytoscape analysis determined 58 shared genes, with cytokine-cytokine receptor interaction representing the most significant pathway (
= 1.29 × 10
) found in the Kyoto encyclopedia of genes and genomes (KEGG). Fifty-four genes in common had drug interactions, per DGIdb analysis. Eighteen drugs, targeting the xerostomia/dry mouth PPI network, have been evaluated for xerostomia, head and neck cancer oral complications, and Sjögren's Syndrome. The PPI network genes IL6R, EGFR, NFKB1, MPO, and TNFSF13B constitute a possible biomarker signature of xerostomia. Validation of the candidate biomarkers is necessary to better stratify patients at the genetic and molecular levels to facilitate drug development or to monitor response to treatment. |
doi_str_mv | 10.3390/jcm11051442 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8911392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637735422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-d36fc4cd6a0434b3d73f4f7e3079d9ab6a1237a28f683a4bc57101e909f4fb393</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaUKaU-9F0EshuJE0siVdCsu2-YCE9rCF3oRsy44W23IluWT_-2qTNGw6lxmY3zwe8xB6T8lnAEXOt81IKSkp5-wVOmZEiIKAhNcH8xE6jXFLcknJGRVv0RGUrJIlsGPUr_Daj_OSTHJ-MgPe2PuEb93kpr64XFxrW3xrkylWebmLLuLVPAdvmjucPL5u7ZRct8M_fNpP-f6XDT4mPzqDv4alxxsTepviO_SmM0O0p0_9BP28-LZZXxU33y-v16ubouFEpaKFqmt401aGcOA1tAI63gkLRKhWmboylIEwTHaVBMPrphSUUKuIylgNCk7Ql0fdealH2zbZVTCDnoMbTdhpb5x-uZncne79Hy0VpaBYFvj0JBD878XGpEcXGzsMZrJ-iZpVIAWV5QP68T9065eQ__RACQElZ3vq7JFq8mNisN2zGUr0PkN9kGGmPxz6f2b_JQZ_AesUl-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637735422</pqid></control><display><type>article</type><title>A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Beckman, Micaela F ; Brennan, Elizabeth J ; Igba, Chika K ; Brennan, Michael T ; Mougeot, Farah B ; Mougeot, Jean-Luc C</creator><creatorcontrib>Beckman, Micaela F ; Brennan, Elizabeth J ; Igba, Chika K ; Brennan, Michael T ; Mougeot, Farah B ; Mougeot, Jean-Luc C</creatorcontrib><description>Xerostomia (subjective complaint of dry mouth) is commonly associated with salivary gland hypofunction. Molecular mechanisms associated with xerostomia pathobiology are poorly understood, thus hampering drug development. Our objectives were to (i) use text-mining tools to investigate xerostomia and dry mouth concepts, (ii) identify associated molecular interactions involving genes as candidate drug targets, and (iii) determine how drugs currently used in clinical trials may impact these genes and associated pathways. PubMed and PubMed Central were used to identify search terms associated with xerostomia and/or dry mouth. Search terms were queried in pubmed2ensembl. Protein-protein interaction (PPI) networks were determined using the gene/protein network visualization program search tool for recurring instances of neighboring genes (STRING). A similar program, Cytoscape, was used to determine PPIs of overlapping gene sets. The drug-gene interaction database (DGIdb) and the clinicaltrials.gov database were used to identify potential drug targets from the xerostomia/dry mouth PPI gene set. We identified 64 search terms in common between xerostomia and dry mouth. STRING confirmed PPIs between identified genes (CL = 0.90). Cytoscape analysis determined 58 shared genes, with cytokine-cytokine receptor interaction representing the most significant pathway (
= 1.29 × 10
) found in the Kyoto encyclopedia of genes and genomes (KEGG). Fifty-four genes in common had drug interactions, per DGIdb analysis. Eighteen drugs, targeting the xerostomia/dry mouth PPI network, have been evaluated for xerostomia, head and neck cancer oral complications, and Sjögren's Syndrome. The PPI network genes IL6R, EGFR, NFKB1, MPO, and TNFSF13B constitute a possible biomarker signature of xerostomia. Validation of the candidate biomarkers is necessary to better stratify patients at the genetic and molecular levels to facilitate drug development or to monitor response to treatment.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm11051442</identifier><identifier>PMID: 35268532</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Arthritis ; Clinical medicine ; Cytokines ; Data mining ; Drug development ; Genes ; Head & neck cancer ; Meta-analysis ; Mouth ; Pathophysiology ; Proteins ; Radiation</subject><ispartof>Journal of clinical medicine, 2022-03, Vol.11 (5), p.1442</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-d36fc4cd6a0434b3d73f4f7e3079d9ab6a1237a28f683a4bc57101e909f4fb393</citedby><cites>FETCH-LOGICAL-c409t-d36fc4cd6a0434b3d73f4f7e3079d9ab6a1237a28f683a4bc57101e909f4fb393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911392/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911392/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35268532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckman, Micaela F</creatorcontrib><creatorcontrib>Brennan, Elizabeth J</creatorcontrib><creatorcontrib>Igba, Chika K</creatorcontrib><creatorcontrib>Brennan, Michael T</creatorcontrib><creatorcontrib>Mougeot, Farah B</creatorcontrib><creatorcontrib>Mougeot, Jean-Luc C</creatorcontrib><title>A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>Xerostomia (subjective complaint of dry mouth) is commonly associated with salivary gland hypofunction. Molecular mechanisms associated with xerostomia pathobiology are poorly understood, thus hampering drug development. Our objectives were to (i) use text-mining tools to investigate xerostomia and dry mouth concepts, (ii) identify associated molecular interactions involving genes as candidate drug targets, and (iii) determine how drugs currently used in clinical trials may impact these genes and associated pathways. PubMed and PubMed Central were used to identify search terms associated with xerostomia and/or dry mouth. Search terms were queried in pubmed2ensembl. Protein-protein interaction (PPI) networks were determined using the gene/protein network visualization program search tool for recurring instances of neighboring genes (STRING). A similar program, Cytoscape, was used to determine PPIs of overlapping gene sets. The drug-gene interaction database (DGIdb) and the clinicaltrials.gov database were used to identify potential drug targets from the xerostomia/dry mouth PPI gene set. We identified 64 search terms in common between xerostomia and dry mouth. STRING confirmed PPIs between identified genes (CL = 0.90). Cytoscape analysis determined 58 shared genes, with cytokine-cytokine receptor interaction representing the most significant pathway (
= 1.29 × 10
) found in the Kyoto encyclopedia of genes and genomes (KEGG). Fifty-four genes in common had drug interactions, per DGIdb analysis. Eighteen drugs, targeting the xerostomia/dry mouth PPI network, have been evaluated for xerostomia, head and neck cancer oral complications, and Sjögren's Syndrome. The PPI network genes IL6R, EGFR, NFKB1, MPO, and TNFSF13B constitute a possible biomarker signature of xerostomia. Validation of the candidate biomarkers is necessary to better stratify patients at the genetic and molecular levels to facilitate drug development or to monitor response to treatment.</description><subject>Arthritis</subject><subject>Clinical medicine</subject><subject>Cytokines</subject><subject>Data mining</subject><subject>Drug development</subject><subject>Genes</subject><subject>Head & neck cancer</subject><subject>Meta-analysis</subject><subject>Mouth</subject><subject>Pathophysiology</subject><subject>Proteins</subject><subject>Radiation</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1r3DAQxUVpaUKaU-9F0EshuJE0siVdCsu2-YCE9rCF3oRsy44W23IluWT_-2qTNGw6lxmY3zwe8xB6T8lnAEXOt81IKSkp5-wVOmZEiIKAhNcH8xE6jXFLcknJGRVv0RGUrJIlsGPUr_Daj_OSTHJ-MgPe2PuEb93kpr64XFxrW3xrkylWebmLLuLVPAdvmjucPL5u7ZRct8M_fNpP-f6XDT4mPzqDv4alxxsTepviO_SmM0O0p0_9BP28-LZZXxU33y-v16ubouFEpaKFqmt401aGcOA1tAI63gkLRKhWmboylIEwTHaVBMPrphSUUKuIylgNCk7Ql0fdealH2zbZVTCDnoMbTdhpb5x-uZncne79Hy0VpaBYFvj0JBD878XGpEcXGzsMZrJ-iZpVIAWV5QP68T9065eQ__RACQElZ3vq7JFq8mNisN2zGUr0PkN9kGGmPxz6f2b_JQZ_AesUl-Q</recordid><startdate>20220305</startdate><enddate>20220305</enddate><creator>Beckman, Micaela F</creator><creator>Brennan, Elizabeth J</creator><creator>Igba, Chika K</creator><creator>Brennan, Michael T</creator><creator>Mougeot, Farah B</creator><creator>Mougeot, Jean-Luc C</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220305</creationdate><title>A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets</title><author>Beckman, Micaela F ; Brennan, Elizabeth J ; Igba, Chika K ; Brennan, Michael T ; Mougeot, Farah B ; Mougeot, Jean-Luc C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-d36fc4cd6a0434b3d73f4f7e3079d9ab6a1237a28f683a4bc57101e909f4fb393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arthritis</topic><topic>Clinical medicine</topic><topic>Cytokines</topic><topic>Data mining</topic><topic>Drug development</topic><topic>Genes</topic><topic>Head & neck cancer</topic><topic>Meta-analysis</topic><topic>Mouth</topic><topic>Pathophysiology</topic><topic>Proteins</topic><topic>Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckman, Micaela F</creatorcontrib><creatorcontrib>Brennan, Elizabeth J</creatorcontrib><creatorcontrib>Igba, Chika K</creatorcontrib><creatorcontrib>Brennan, Michael T</creatorcontrib><creatorcontrib>Mougeot, Farah B</creatorcontrib><creatorcontrib>Mougeot, Jean-Luc C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckman, Micaela F</au><au>Brennan, Elizabeth J</au><au>Igba, Chika K</au><au>Brennan, Michael T</au><au>Mougeot, Farah B</au><au>Mougeot, Jean-Luc C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2022-03-05</date><risdate>2022</risdate><volume>11</volume><issue>5</issue><spage>1442</spage><pages>1442-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Xerostomia (subjective complaint of dry mouth) is commonly associated with salivary gland hypofunction. Molecular mechanisms associated with xerostomia pathobiology are poorly understood, thus hampering drug development. Our objectives were to (i) use text-mining tools to investigate xerostomia and dry mouth concepts, (ii) identify associated molecular interactions involving genes as candidate drug targets, and (iii) determine how drugs currently used in clinical trials may impact these genes and associated pathways. PubMed and PubMed Central were used to identify search terms associated with xerostomia and/or dry mouth. Search terms were queried in pubmed2ensembl. Protein-protein interaction (PPI) networks were determined using the gene/protein network visualization program search tool for recurring instances of neighboring genes (STRING). A similar program, Cytoscape, was used to determine PPIs of overlapping gene sets. The drug-gene interaction database (DGIdb) and the clinicaltrials.gov database were used to identify potential drug targets from the xerostomia/dry mouth PPI gene set. We identified 64 search terms in common between xerostomia and dry mouth. STRING confirmed PPIs between identified genes (CL = 0.90). Cytoscape analysis determined 58 shared genes, with cytokine-cytokine receptor interaction representing the most significant pathway (
= 1.29 × 10
) found in the Kyoto encyclopedia of genes and genomes (KEGG). Fifty-four genes in common had drug interactions, per DGIdb analysis. Eighteen drugs, targeting the xerostomia/dry mouth PPI network, have been evaluated for xerostomia, head and neck cancer oral complications, and Sjögren's Syndrome. The PPI network genes IL6R, EGFR, NFKB1, MPO, and TNFSF13B constitute a possible biomarker signature of xerostomia. Validation of the candidate biomarkers is necessary to better stratify patients at the genetic and molecular levels to facilitate drug development or to monitor response to treatment.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35268532</pmid><doi>10.3390/jcm11051442</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2022-03, Vol.11 (5), p.1442 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8911392 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Arthritis Clinical medicine Cytokines Data mining Drug development Genes Head & neck cancer Meta-analysis Mouth Pathophysiology Proteins Radiation |
title | A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Text%20Mining-Guided%20Meta-Analysis%20Approach%20to%20Identify%20Potential%20Xerostomia%20Drug%20Targets&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Beckman,%20Micaela%20F&rft.date=2022-03-05&rft.volume=11&rft.issue=5&rft.spage=1442&rft.pages=1442-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm11051442&rft_dat=%3Cproquest_pubme%3E2637735422%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637735422&rft_id=info:pmid/35268532&rfr_iscdi=true |