A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets

Xerostomia (subjective complaint of dry mouth) is commonly associated with salivary gland hypofunction. Molecular mechanisms associated with xerostomia pathobiology are poorly understood, thus hampering drug development. Our objectives were to (i) use text-mining tools to investigate xerostomia and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2022-03, Vol.11 (5), p.1442
Hauptverfasser: Beckman, Micaela F, Brennan, Elizabeth J, Igba, Chika K, Brennan, Michael T, Mougeot, Farah B, Mougeot, Jean-Luc C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Xerostomia (subjective complaint of dry mouth) is commonly associated with salivary gland hypofunction. Molecular mechanisms associated with xerostomia pathobiology are poorly understood, thus hampering drug development. Our objectives were to (i) use text-mining tools to investigate xerostomia and dry mouth concepts, (ii) identify associated molecular interactions involving genes as candidate drug targets, and (iii) determine how drugs currently used in clinical trials may impact these genes and associated pathways. PubMed and PubMed Central were used to identify search terms associated with xerostomia and/or dry mouth. Search terms were queried in pubmed2ensembl. Protein-protein interaction (PPI) networks were determined using the gene/protein network visualization program search tool for recurring instances of neighboring genes (STRING). A similar program, Cytoscape, was used to determine PPIs of overlapping gene sets. The drug-gene interaction database (DGIdb) and the clinicaltrials.gov database were used to identify potential drug targets from the xerostomia/dry mouth PPI gene set. We identified 64 search terms in common between xerostomia and dry mouth. STRING confirmed PPIs between identified genes (CL = 0.90). Cytoscape analysis determined 58 shared genes, with cytokine-cytokine receptor interaction representing the most significant pathway ( = 1.29 × 10 ) found in the Kyoto encyclopedia of genes and genomes (KEGG). Fifty-four genes in common had drug interactions, per DGIdb analysis. Eighteen drugs, targeting the xerostomia/dry mouth PPI network, have been evaluated for xerostomia, head and neck cancer oral complications, and Sjögren's Syndrome. The PPI network genes IL6R, EGFR, NFKB1, MPO, and TNFSF13B constitute a possible biomarker signature of xerostomia. Validation of the candidate biomarkers is necessary to better stratify patients at the genetic and molecular levels to facilitate drug development or to monitor response to treatment.
ISSN:2077-0383
2077-0383
DOI:10.3390/jcm11051442