Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential

One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-02, Vol.23 (5), p.2577
Hauptverfasser: Vesga-Jiménez, Diego Julián, Martin, Cynthia, Barreto, George E, Aristizábal-Pachón, Andrés Felipe, Pinzón, Andrés, González, Janneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23052577