A large-scale microelectromechanical-systems-based silicon photonics LiDAR
Three-dimensional (3D) imaging sensors allow machines to perceive, map and interact with the surrounding world 1 . The size of light detection and ranging (LiDAR) devices is often limited by mechanical scanners. Focal plane array-based 3D sensors are promising candidates for solid-state LiDARs becau...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-03, Vol.603 (7900), p.253-258 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional (3D) imaging sensors allow machines to perceive, map and interact with the surrounding world
1
. The size of light detection and ranging (LiDAR) devices is often limited by mechanical scanners. Focal plane array-based 3D sensors are promising candidates for solid-state LiDARs because they allow electronic scanning without mechanical moving parts. However, their resolutions have been limited to 512 pixels or smaller
2
. In this paper, we report on a 16,384-pixel LiDAR with a wide field of view (FoV, 70° × 70°), a fine addressing resolution (0.6° × 0.6°), a narrow beam divergence (0.050° × 0.049°) and a random-access beam addressing with sub-MHz operation speed. The 128 × 128-element focal plane switch array (FPSA) of grating antennas and microelectromechanical systems (MEMS)-actuated optical switches are monolithically integrated on a 10 × 11-mm
2
silicon photonic chip, where a 128 × 96 subarray is wire bonded and tested in experiments. 3D imaging with a distance resolution of 1.7 cm is achieved with frequency-modulated continuous-wave (FMCW) ranging in monostatic configuration. The FPSA can be mass-produced in complementary metal–oxide–semiconductor (CMOS) foundries, which will allow ubiquitous 3D sensors for use in autonomous cars, drones, robots and smartphones.
A large focal plane switch array is constructed to steer the laser beam of a LiDAR system, leading to 3D imaging with 16,384 pixels, improving the resolution and coverage of solid-state LiDARs. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/s41586-022-04415-8 |