Investigation of the Coupled Effects of Molecular Weight and Charge-Transfer Interactions on the Optical and Photochemical Properties of Dissolved Organic Matter
We studied the formation of photochemically produced reactive intermediates (RI) from dissolved organic matter (DOM). Specifically, we focused on the effects of variable molecular weight and chemical reduction on the optical properties of DOM (absorbance and fluorescence) and the formation of single...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2016-08, Vol.50 (15), p.8093-8102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied the formation of photochemically produced reactive intermediates (RI) from dissolved organic matter (DOM). Specifically, we focused on the effects of variable molecular weight and chemical reduction on the optical properties of DOM (absorbance and fluorescence) and the formation of singlet oxygen (1O2), DOM triplet excited states (3DOM*), and the hydroxyl radical (•OH). The data are largely evaluated in terms of a charge-transfer (CT) model, but deficiencies in the model to explain the data are pointed out when evident. A total of two sets of samples were studied that were subjected to different treatments; the first set included secondary-treated wastewaters and a wastewater-impacted stream, and the second was a DOM isolate. Treatments included size fractionation and chemical reduction using sodium borohydride. Taken as a whole, the results demonstrate that decreasing molecular weight and borohydride reduction work in opposition regarding quantum efficiencies for 1O2 and 3DOM* production but in concert for fluorescence and •OH production. The optical and photochemical data provide evidence for a limited role of CT interactions occurring in lower-molecular-weight DOM molecules. In addition, the data suggest that the observed optical and photochemical properties of DOM are a result of multiple populations of chromophores and that their relative contribution is changed by molecular-weight fractionation and borohydride reduction. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.6b02109 |