An analysis of Plasmodium falciparum-K13 mutations in India

Malaria is one of the deadliest parasitic diseases in human. Currently, Artemisinin-based combination therapy is considered as the gold standard and most common treatment option. However, the origin and transmission of Plasmodium falciparum from the Greater Mekong Subregion, which has decreased arte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of parasitic diseases 2022-03, Vol.46 (1), p.296-303
Hauptverfasser: Murmu, Laxman Kumar, Barik, Tapan Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malaria is one of the deadliest parasitic diseases in human. Currently, Artemisinin-based combination therapy is considered as the gold standard and most common treatment option. However, the origin and transmission of Plasmodium falciparum from the Greater Mekong Subregion, which has decreased artemisinin (ART) sensitivity, has sparked global concern. The reduced ART sensitivity has been associated with mutations in the Atpase6 and Kelch13 propeller domain of Plasmodium falciparum . A molecular marker is critically needed to monitor the spread of artemisinin resistance. In this article, we reviewed the k13 mutations and potential marker for ART resistance in India. There have been fourteen mutations identified, three of which have been validated by the World Health Organization (WHO) as artemisinin resistance mutations (F446I, R561H/C, and R539T). Among them, the role of F446I and R561H/C in ART resistance is conflicting. R539T and G625R mutation has been identified as an ART- resistance marker in India.
ISSN:0971-7196
0975-0703
DOI:10.1007/s12639-021-01425-7