Predicting acupuncture efficacy for functional dyspepsia based on routine clinical features: a machine learning study in the framework of predictive, preventive, and personalized medicine

Background Acupuncture is safe and effective for functional dyspepsia (FD), while its efficacy varies among individuals. Predicting the response of different FD patients to acupuncture treatment in advance and therefore administering the tailored treatment to the individual is consistent with the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EPMA journal 2022-03, Vol.13 (1), p.137-147
Hauptverfasser: Yin, Tao, Zheng, Hui, Ma, Tingting, Tian, Xiaoping, Xu, Jing, Li, Ying, Lan, Lei, Liu, Mailan, Sun, Ruirui, Tang, Yong, Liang, Fanrong, Zeng, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Acupuncture is safe and effective for functional dyspepsia (FD), while its efficacy varies among individuals. Predicting the response of different FD patients to acupuncture treatment in advance and therefore administering the tailored treatment to the individual is consistent with the principle of predictive, preventive, and personalized medicine (PPPM/3PM). In the current study, the individual efficacy prediction models were developed based on the support vector machine (SVM) algorithm and routine clinical features, aiming to predict the efficacy of acupuncture in treating FD and identify the FD patients who were appropriate to acupuncture treatment. Methods A total of 745 FD patients were collected from two clinical trials. All the patients received a 4-week acupuncture treatment. Based on the demographic and baseline clinical features of 80% of patients in trial 1, the SVM models were established to predict the acupuncture response and improvements of symptoms and quality of life (QoL) at the end of treatment. Then, the left 20% of patients in trial 1 and 193 patients in trial 2 were respectively applied to evaluate the internal and external generalizations of these models. Results These models could predict the efficacy of acupuncture successfully. In the internal test set, models achieved an accuracy of 0.773 in predicting acupuncture response and an R 2 of 0.446 and 0.413 in the prediction of QoL and symptoms improvements, respectively. Additionally, these models had well generalization in the independent validation set and could also predict, to a certain extent, the long-term efficacy of acupuncture at the 12-week follow-up. The gender, subtype of disease, and education level were finally identified as the critical predicting features. Conclusion Based on the SVM algorithm and routine clinical features, this study established the models to predict acupuncture efficacy for FD patients. The prediction models developed accordingly are promising to assist doctors in judging patients’ responses to acupuncture in advance, so that they could tailor and adjust acupuncture treatment plans for different patients in a prospective rather than the reactive manner, which could greatly improve the clinical efficacy of acupuncture treatment for FD and save medical expenditures.
ISSN:1878-5077
1878-5085
DOI:10.1007/s13167-022-00271-8