Embracing Green Computing in Molecular Phylogenetics

Abstract Molecular evolutionary analyses require computationally intensive steps such as aligning multiple sequences, optimizing substitution models, inferring evolutionary trees, testing phylogenies by bootstrap analysis, and estimating divergence times. With the rise of large genomic data sets, ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2022-03, Vol.39 (3)
1. Verfasser: Kumar, Sudhir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Molecular evolutionary analyses require computationally intensive steps such as aligning multiple sequences, optimizing substitution models, inferring evolutionary trees, testing phylogenies by bootstrap analysis, and estimating divergence times. With the rise of large genomic data sets, phylogenomics is imposing a big carbon footprint on the environment with consequences for the planet’s health. Electronic waste and energy usage are large environmental issues. Fortunately, innovative methods and heuristics are available to shrink the carbon footprint, presenting researchers with opportunities to lower the environmental costs and greener evolutionary computing. Green computing will also enable greater scientific rigor and encourage broader participation in big data analytics.
ISSN:0737-4038
1537-1719
1537-1719
DOI:10.1093/molbev/msac043