Indiscriminate SARS-CoV-2 multivariant detection using magnetic nanoparticle-based electrochemical immunosensing

The increasing mutation frequency of the SARS-CoV-2 virus and the emergence of successive variants have made correct diagnosis hard to perform. Developing efficient and accurate methods to diagnose infected patients is crucial to effectively mitigate the pandemic. Here, we developed an electrochemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2022-06, Vol.243, p.123356-123356, Article 123356
Hauptverfasser: Durmus, Ceren, Balaban Hanoglu, Simge, Harmanci, Duygu, Moulahoum, Hichem, Tok, Kerem, Ghorbanizamani, Faezeh, Sanli, Serdar, Zihnioglu, Figen, Evran, Serap, Cicek, Candan, Sertoz, Ruchan, Arda, Bilgin, Goksel, Tuncay, Turhan, Kutsal, Timur, Suna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing mutation frequency of the SARS-CoV-2 virus and the emergence of successive variants have made correct diagnosis hard to perform. Developing efficient and accurate methods to diagnose infected patients is crucial to effectively mitigate the pandemic. Here, we developed an electrochemical immunosensor based on SARS-CoV-2 antibody cocktail-conjugated magnetic nanoparticles for the sensitive and accurate detection of the SARS-CoV-2 virus and its variants in nasopharyngeal swabs. The application of the antibody cocktail was compared with commercially available anti-SARS-CoV-2 S1 (anti-S1) and anti-S2 monoclonal antibodies. After optimization and calibration, the limit of detection (LOD) determination demonstrated a LOD = 0.53–0.75 ng/mL for the antibody cocktail-based sensor compared with 0.93 ng/mL and 0.99 ng/mL for the platforms using anti-S1 and anti-S2, respectively. The platforms were tested with human nasopharyngeal swab samples pre-diagnosed with RT-PCR (10 negatives and 40 positive samples). The positive samples include the original, alpha, beta, and delta variants (n = 10, for each). The polyclonal antibody cocktail performed better than commercial anti-S1 and anti-S2 antibodies for all samples reaching 100% overall sensitivity, specificity, and accuracy. It also showed a wide range of variants detection compared to monoclonal antibody-based platforms. The present work proposes a versatile electrochemical biosensor for the indiscriminate detection of the different variants of SARS-CoV-2 using a polyclonal antibody cocktail. Such diagnostic tools allowing the detection of variants can be of great efficiency and economic value in the fight against the ever-changing SARS-CoV-2 virus. [Display omitted] •A novel all-in-one system for the indiscriminate detection of SARS-CoV-2 variants.•The system combines a disposable SPCE sensor with MNPs for SARS-CoV-2 detection.•Polyclonal Ab cocktail-based system has better performance than mAb-based systems.•The developed system presents good accuracy, selectivity and specificity.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2022.123356